
Prettybird: A DSL for Programmatic Font Compilation

ANONYMOUS

Fig. 1. A pangram of the Latin alphabet using the font "Prettybird Roman", compiled with Prettybird.

Improvements in display technology over time have led to an increase in public interest in the field of digital
typography. As a result, the interest in non-standard font usage has grown over time. As the software has
become more common, font design has become more accessible to beginners. However, the creation of a new
font requires a large amount of time, and achieving proficiency in this art form requires even more. These
hurdles hinder the ability of beginners to participate in this form of expression.

In this work we present Prettybird, a domain-specific functional programming language to simplify the
early steps of font design. With a simple grammar and reusable functions, Prettybird makes font design
more approachable to beginners while reducing the amount of time required for experts to begin a new
font. Additionally, Prettybird avoids pitfalls of METAFONT, a previous attempt at font programming. Our
anonymous survey shows that both programmers and font designers prefer Prettybird over METAFONT in
terms of readability and writability.
CCS Concepts: • Software and its engineering→ Domain specific languages; Source code generation; •
Human-centered computing→ Human computer interaction (HCI).
Additional Key Words and Phrases: typefaces, fonts, font design, functional programming
ACM Reference Format:
Anonymous. 2022. Prettybird: A DSL for Programmatic Font Compilation. In . ACM, New York, NY, USA,
12 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Despite the growing interest in non-standard fonts over time, as seen in Fig. 2, font design tools
remain largely similar to one another, and almost exclusively paid. Table 1 compares the popularity
of common font design software, revealing that that users have the choice between two dominant
products: FontLab, a proprietary editor with a large entry fee, or FontForge, a free program with
minimal developer support and a small community.

Additionally, interest in non-standard fonts for use in webpages has grown as the internet ages.
In the HTTP Archive’s 2022 Web Almanac report [12], it was measured that in August, about 83.8%
of all desktop sites use web fonts, where a "web font" is defined as a font file hosted by a website,
intended to be downloaded and rendered instead of using one of the standard fonts built-in to a
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
PLDI ’23, June 19–21, 2023, Orlando, FL
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

PLDI ’23, June 19–21, 2023, Orlando, FL Anonymous

Graphical Font Design Software Lifetime Price Google Trends RSV at start of year
2011 2014 2017 2020 2022

FontLab 8 $499 68 49 35 25 27
FontForge $0 65 49 32 26 25

Fontographer 5 $259 44 21 8 4 4
FontCreator 14 $49 32 18 11 6 5
Robofont 4 $490 0 3 2 2 3

Table 1. Popular graphical font design software mapped to the lifetime price for their base package, and their
Google Relative Search Volumes [11]

user’s web browser. This measurement has doubled since April 2014, revealing a large increase in
web designers’ preference to use non-standard fonts over time.

Fig. 2. Webfont usage [12] from Nov 15 2010 to Aug 1 2022.

Webpage designers who want to use custom fonts have experienced a reduction in the number
of available font design tools over the past 11 years, and the remaining tools are either expensive
or outdated. For these reasons, we introduce Prettybird, a domain-specific functional programming
language for font design. A successor toMETAFONT, Prettybird intends to provide a user experience
that is comfortable for users at all skill levels of programming and font design, and also provides
higher-level features like recursion to allow for more intricacy and complexity in glyphs. We
develop Prettybird with three contributions:

1.1 Language Design
Our first contribution is the design of a language for creating bitmap and scalable outline fonts.
Prettybird supplements the font design process for both new and experienced font designers
primarily through its ability to define and reuse functions. Function reuse reduces redundancy
across similar glyph components, as many glyphs in a font often reuse components such as serifs
on capital letters in Roman fonts or tittles above lowercase "i" and "j" glyphs.

2

Prettybird: A DSL for Programmatic Font Compilation PLDI ’23, June 19–21, 2023, Orlando, FL

Additionally, Prettybird commits to using only four basic functions to build fonts, lowering the
barrier to entry for new users even compared to graphical font editors, whose interfaces tend to
include many options for experienced font designers.
Font design is a graphical medium and is accordingly dominated by graphical font design

software. Text-based font design software like METAFONT has largely been abandoned now that
the technical limitations of its design era [1] have been resolved, allowing for graphical font design
software to become standard. Prettybird’s intended utility is in its revitalization of text-based font
design, rather than replacing graphical font design software.

1.2 Compiler Implementation
Our second contribution is the implementation of a Prettybird compiler that produces BDF-,
SVG-, and TTF-formatted font files from Prettybird source code. The compiler utilizes the Lark
[9] parsing library to parse user input. Once the parse tree has been converted to Prettybird’s
internal representation, it applies simple post-processing to ensure that user-created fonts are
scaled properly by default. This ensures that Prettybird-compiled fonts of point size 𝑛 are roughly
the same height as other fonts of point size 𝑛. Finally, the internal representation can be compiled
either to a bitmap font or outline font via FontForge’s Python scripting API [2]. The specifics of
either format are described below:

• Bitmap Font - A plaintext file following the Glyph Bitmap Distribution Format (BDF), gen-
erated via a custom BDF exporter. These BDF files can then be converted to the Portable
Compiled Format (PCF), a format encoding identical information, compressed for faster load
speeds. Additionally, bitmap fonts can be converted to scalable bitmap fonts that retain their
bitmapped appearance at high resolutions via the FontForge API.

• Outline Font - Either a plaintext Scalable Vector Graphics (SVG) file or a binary TrueType
Font (TTF) file.

In its current form, the Prettybird compiler suffers from two technical limitations when dealing
with outline fonts: overlapping shapes and curve filling. These limitations are not concerns if bitmap
output is chosen, as they stem from inconsistencies between SVG rendering and TTF rendering,
and bitmap fonts are rendered within the compiler itself.

• Overlapping Shapes - The Prettybird compiler treats all outline fonts first as SVG data. This
SVG data is passed into FontForge to be converted to TTF data. However, while SVG renderers
will draw overlapping shapes on top of one another, TTF renderers will only do so if the
contours of the shapes are drawn in the same direction (clockwise or counterclockwise). The
SVG format does not allow for contour direction control, so overlapping shapes will cause the
intersection of overlapping shapes to be blank rather than filled. This limitation is planned to
be resolved in future work as the Prettybird compiler’s backend is rewritten to make stronger
use of FontForge’s scripting API instead of relying on SVG conversions.

• Curve Filling - The Prettybird compiler offers the filled keyword for its fundamental
functions, filling their areas. However, filling shapes is not currently supported for user-
defined functions. This limitation is planned to be resolved in future work as filling complex
contours with the FontForge API is a simple task.

"Prettybird Roman", the font used in Fig. 1 and Fig. 6 experiences both of these issues. The font
file was manually modified in FontForge after being compiled from its source code in order to fill
in serif curves and remove overlapping intersections.

3

PLDI ’23, June 19–21, 2023, Orlando, FL Anonymous

1.3 Study on Preference of Prettybird over METAFONT

Our final contribution is a study on user preferences between Prettybird and METAFONT. Respon-
dents self-identified their proficiency in programming and font design, and were then asked about
the readability and writability of code samples of the two languages that produce similar glyphs.
All four demographics listed above overwhelmingly prefer Prettybird over METAFONT in terms of
readability and writability for samples utilizing vectors and Bezier curves.

2 BACKGROUND
In this section we describe the definitions and workflows of font design, as well as definitions
necessary to describe the internal functionality of the Prettybird compiler.

2.1 Characters and Fonts
In font design, a character is a symbol representing a letter or number, or some other category of
mark such as an arithmetic operation. A character could be implemented as many different glyphs,
which are representations of a character in different styles, such as bolded or italicized.

Fig. 3. A collection of glyphs for the lowercase character "a", in the Times New Roman font, in the styles
normal, bolded, italicized, and bolded-italicized respectively.

A typeface defines a set of design principles for what characters should look like, including their
shapes, stroke thicknesses, or whether or not they have serifs (a small stylistic stroke or mark near
the end of a larger stroke of a glyph). A typeface could be implemented as many different fonts,
which are interpretations of typefaces under some style, such as bolded, italicized, or thin.

Fig. 4. Roboto Thin and Roboto Black, two fonts for the typeface Roboto.

2.2 Hinting
Font hinting is the practice of including instructions in font data regarding how to render glyphs
at lower resolutions, such that the glyphs are still legible and match the style of the font. Many
common methods for hinting exist, however the most common, used by TrueType and many other
modern formats, is grid-fit hinting. In grid-fit hinting, a font rasterizer will morph the provided
outline of a glyph such that its distinctive characteristics remain distinctive at small sizes.
Manual hinting is also commonly used, especially in glyphs that require more detail, such as

script fonts or fonts with characters that require more strokes.

4

Prettybird: A DSL for Programmatic Font Compilation PLDI ’23, June 19–21, 2023, Orlando, FL

Fig. 5. The string "WATER" in the font Times New Roman, with overlapping glyph areas highlighted.

2.3 Kerning
Font kerning is the practice of adjusting the space in between pairs of glyphs in a font to achieve a
more visually appealing result. Popular fonts such as Futura and Helvetica contain large amounts
of manual kerning data to ensure that the fonts are maximally legible.
Optical kerning is an existing method of automatic kerning that uses outline information to

compute the optimal spacing between pairs of characters. Automatic optical kerning is offered
by most font design software, however still requires user setup and intervention throughout the
process.

2.4 Existing Font Programming Approaches
Prettybird is designed as a successor to METAFONT, a previous approach to font programming first
published by Knuth in 1979 [6] and later refined in 1986 [7][8]. METAFONT was initially designed
as a "system for the design of alphabets suited to raster-based devices that print or display text"
[7], however since its creation multiple methods for converting the bitmap font files generated by
METAFONT into scalable outline fonts have been published [5][10].

3 MOTIVATING EXAMPLE
Prettybird’s offering of functions provides a feature not offered in many graphical font editors:
reusable font components such as serifs. The code example in Fig. 9 defines two reusable serif
functions that are applied to the uppercase "I" and "T" glyphs. Serif fonts make heavy reuse of
serifs, so functionality to reuse these shapes widely across multiple glyphs greatly reduces the time
spent adding serifs to symbols.

As a proof of concept, we designed "Prettybird Roman", the font used in Fig. 1 using these serif
functions, as well as a bubble function used for the round components in the glyphs B, C, D, G, P,
and R. Code samples can be found in Appendix A.

Fig. 6. The glyphs generated by Fig. 9

4 PRETTYBIRD
Prettybird is a high-level, domain-specific functional programming language designed to simplify
the creation of new fonts. This section describes the definitions of operators and operands, as well
as the language’s functional behavior.

4.1 Language Overview
Prettybird is intended to be a standalone language, with each program corresponding to a compiled
font. Each program consists of a set of glyph declarations. Glyph declarations consist of a base

5

PLDI ’23, June 19–21, 2023, Orlando, FL Anonymous

Rule Description

program : (character | function_declaration)+
Declares a font consisting of characters
and function declarations

character : "char" identifier "{" statement* "}"
Declares a character consisting of
operations on glyph space

statement : "base" base_statement
Defines the appearance of the glyph’s
space before operations are performed
on it

| "steps" "{" (update_mode [atom | function_call])* "}"
Defines the set of operations performed
on the glyph’s space

update_mode : ("draw" | "erase") "filled"?

Determines whether an atom will fill a
pixel in glyph space, or clear it, and
whether the atom will operate on all
points within its boundary

atom : "vector" "(" point "," point ")"

| "rectangle" "(" point "," point ")"
Defines an operation on glyph space
given a set of inputs

| "ellipse" "(" point "," point ")"

| "bezier" "(" point, "," point "," point ")"

point : "(" number "," number ")" Designates a point in space

Table 2. Fundamental subset of Prettybird grammar

declaration, describing the size and appearance of the glyph space before any functions are applied
to it, and a steps declaration, describing an ordered list of functions to apply to the glyph space.
The grammar for this behavior is described in Table 2. Prettybird utilizes an immutable number
system consisting of number and point data operated on by a set of built-in, fundamental functions
called atoms.

4.2 Number Data
Number data is represented either as a signed floating-point value, or a pair of signed floating-
point values also referred to as a point. These values are strictly immutable; data manipulation
is accomplished through recursion in user-defined functions. The language implements a simple
mathematics system with plus, minus, multiply, divide, exponent, and modulus operators. Addition-
ally, the logical bitwise operators and, or, and xor are implemented for extended utility. Operators
take either numbers or points as their operands, and are type-agnostic. Operating on two numbers
trivially provides a single number result. Operating on two pairs maps the operation between each
item in the pair to an output point, e.g.

(𝑎, 𝑏) ∗ (𝑐, 𝑑) = (𝑎 ∗ 𝑐, 𝑏 ∗ 𝑑),

and operating between a number and a pair will broadcast the number to a duplicate pair and
perform a pairwise operation, e.g.

𝑎 − (𝑏, 𝑐) = (𝑎, 𝑎) − (𝑏, 𝑐) = (𝑎 − 𝑏, 𝑎 − 𝑐).

4.3 Atoms
An atom, or atomic operation, denotes a primitive operation that modifies the contents of a glyph
space given a set of inputs. We chose vectors, rectangles, ellipses, and Bezier curves as atoms for

6

Prettybird: A DSL for Programmatic Font Compilation PLDI ’23, June 19–21, 2023, Orlando, FL

the language because they make up the set of fundamental building blocks of most fonts. A short
description of each atom follows:

• vector(point, point) - Applies a vector pattern to glyph space from the first point to the
second point.

• rectangle(point, point) - Applies a rectangle pattern to glyph space, using the input
points as the top-left corner and the bottom-right corner of the rectangle.

• ellipse(point, point) - Applies an ellipse pattern to glyph space, using the input points
as the top-left corner and the bottom-right corner of the rectangle in which the ellipse is
inlaid.

• bezier(point, point, point) - Applies a Bezier curve pattern to glyph space using the
input points as the curve’s two endpoints, and the control point.

In the language’s implementation, there are additional provided operations such as point, circle,
square, and spline that can be derived from vector, ellipse, rectangle, and bezier. For an
improved user experience, some overloaded atoms have been included in the compiler implementa-
tion to provide alternative ways to apply these atoms to the glyph space, such as ellipse(point,
number, number), which applies an ellipse pattern given a center, width, and height.

4.4 Functional Behavior
Prettybird functions are defined with an identifier and a set of parameters, followed by a set of
statements. Each function call spawns a blank copy of glyph space to operate on. Each copy of glyph
space is added to a glyph space stack for the current character being operated on. When a function
terminates, it applies its own glyph space to the glyph space underneath it in the stack via a binary
"OR" operation, essentially overlaying the above space onto the below space. Fig. 7 illustrates this
behavior, with left_bar as a function that draws a vector filling the leftmost column, bottom_bar
as a function that draws a vector filling the bottommost row, and corner_dot as a function that
draws a point filling the top-right corner.

Fig. 7. Function stack execution over time.

The motivation behind the glyph space stack is ease of use; because functions spawn their own
glyph space, functions may be written without the concern of overwriting a character’s glyph space
with "temporary" data. For example, a function to apply a parabolic pattern to glyph space might
first draw an ellipse to its local space, then erase an arc of the ellipse to produce the desired shape.
Without the worry of overwriting a character’s base glyph space, the bottom arc of the ellipse may
be erased without the concern of erasing other important data.

7

PLDI ’23, June 19–21, 2023, Orlando, FL Anonymous

Rule Description

function_declaration : "define" identifier function_parameter_list

"{" (update_mode [atom | function_call])* "}"
Declares a function given a function
identifier and a list of operations on
glyph space

function_parameter_list : "(" function_parameters* ")"

function_parameters : identifier "," function_parameters

| identifier
Defines a list of identifiers to be used as
function parameter names

function_call : identifier "(" [function_call_parameters] ")"

function_call_parameters : value "," function_call_parameters

| value

value : point | number | identifier Calls a function given a set of values

Table 3. Extended grammar for functions

In the interest of a simple grammar, user-defined functions do not specify the type of their
arguments. However, atoms implicitly do specify the type of their arguments due to their imple-
mentation in the Prettybird compiler. Because the language only supports two datatypes, number
and point, this application of the duck typing paradigm[3] is better suited for new programmers
while largely avoiding the issue of propagating incorrect data types through multiple function calls
that other duck-typed languages experience.

4.5 Hinting and Kerning
By default, the Prettybird compiler applies automatic hinting via FontForge. An advantage of font
programming languages over standard font editing practice is the notion that a font designer’s
intentions are described via the language, rather than obscured by the shape of the glyph itself
[7]. We can provide enhanced hinting due to the fact that users are already manually hinting their
fonts as they type out Prettybird commands, however we save this development for future work.
Additionally, the compiler applies rudimentary automatic kerning to compiled fonts, ensuring

that characters have a minimum empty width between each other such that they can be easily
distinguished.

5 EVALUATION
We evaluate Prettybird’s readability and writability through a self-reporting survey comparing
near-equivalent glyphs generated by Prettybird and METAFONT code samples.
We received 63 anonymous responses to the survey and asked respondents to self-report how

much time they have spent programming, how much time they have spent designing fonts, and
their familiarity with Bezier curves on a scale of 1 ("Not familiar at all") to 5 ("Extremely familiar").
From the results, 58 respondents were self-described as programmers (having written "any kind of
code"), 10 respondents were self-described as font designers, and 22 respondents were self-described
as familiar with Bezier curves.
In addition to self-reporting their familiarity with these topics, respondents were shown the

two capital "I" glyphs in Fig. 10; one was generated from an example in The METAFONTbook
[7], and one was generated by Prettybird. These code samples were not labeled with the name

8

Prettybird: A DSL for Programmatic Font Compilation PLDI ’23, June 19–21, 2023, Orlando, FL

Claimed Prettybird "I" glyph code
was more readable

Claimed METAFONT "I" glyph code
was more readable

Preferred to modify Prettybird "I"
glyph code to change glyph shape

Preferred to modify METAFONT "I"
glyph code to change glyph shape

100%

88%

12%

100%

80%

20%

Preferences for "I" glyph

Programmers
Font Designers

Claimed Prettybird spiral
glyph code was more readable

Claimed METAFONT spiral
glyph code was more readable

Preferred to modify Prettybird spiral
glyph code to change glyph shape

Preferred to modify METAFONT spiral
glyph code to change glyph shape

84%

16%

88%

12%

90%

10%

90%

10%

82%

18%

86%

14%

Preferences for spiral glyph

Programmers
Font Designers
Familiar with Bezier Curves

Fig. 8. Preferences between Prettybird and METAFONT for the capital "I" and spiral glyphs.

of the language and did not utilize syntax highlighting. The METAFONT sample used the same
formatting as it was presented in the original text.

Respondents were asked which program was easier to read and which program they would prefer
to modify if they wanted to make changes to how the glyphs looked. 100% of respondents preferred
Prettybird for readability, and between 80% and 88% of respondents across all demographics
preferred Prettybird for writability as seen in Fig. 8.
A similar question was asked of the set of spiral glyphs in Fig. 11, again one generated from a

METAFONT sample [4], and one generated by Prettybird. This example contrasts with the capital
"I" glyph example, as both "I" glyphs are roughly identical, however the METAFONT spiral glyph
uses cubic Bezier curves while the Prettybird spiral uses quadratic Bezier curves. Again, Prettybird
was ranked easier to read and modify among those who self-reported as familiar with Bezier curves,
as shown in Fig. 8. Both the readability and modifiability preferences for the spiral glyph code are
also matched among the programmer and font designer demographics.

These results describe a preference among both programmers and font designers of Prettybird’s
grammar and program structure for glyphs that use the common vector and bezier commands.
The size of the margins of this preference indicate that a possible reason for the decline in use of
METAFONT was the complexity of its programs rather than a lack of utility of font programming
as a whole.

6 CONCLUSION AND FUTUREWORK
We propose Prettybird as an accessible and powerful functional programming language for pro-
grammatic font design. Prettybird offers a simplistic grammar and common font design utilities to
provide a modern mode of font design.

Prettybird provides basic building blocks for font design, however its utility is limited due to its
current implementation. Future work on Prettybird will involve integrating it with a live graphical
preview or a font editor such as FontForge to combine the best aspects of graphical and text-based
font design.

Although the design principles of METAFONT and Prettybird differ, some features such as a pen
tool could provide additional utility for many users. We plan to provide users the ability to use
glyph subspaces generated by function calls as a kind of brush, allowing them to stamp this shape
repeatedly or use it to draw variable-width curves.
Finally, we plan to enhance support for kerning. This will require an expansion to the current

set of the language’s grammar. Better automatic kerning can be accomplished with modifications
to the compiler backend, however we seek to implement complete control over kerning without
requiring users to exit the language.

9

PLDI ’23, June 19–21, 2023, Orlando, FL Anonymous

REFERENCES
[1] Nelson H. F. Beebe. 2005. The design of TEX and METAFONT: A retrospective.
[2] The FontForge Project Contributors. 2004. FontForge Open Source Font editor. https://fontforge.org/en-US/
[3] Python Software Foundation. 2022. Glossary. https://docs.python.org/3/glossary.html#term-duck-typing
[4] Jeremy Gibbons. 1970. Dotted and Dashed Lines in METAFONT. (02 1970).
[5] Boguslaw Jackowski, Janusz M. Nowacki, and Piotr M. Strzelczyk. 2001. MetaType 1 : a METAPOST-based engine for

generating Type 1 fonts.
[6] Donald Knuth. 1979. TEX and METAFONT. American Mathematical Society.
[7] Donald Ervin Knuth. 1990. Computers and typesetting. Vol. C - The METAFONTbook. Addison Wesley.
[8] Donald Ervin Knuth. 1990. Computers and typesetting. Vol. D - METAFONT: The Program. Addison Wesley.
[9] Lark. 2018. Lark. https://github.com/lark-parser/lark
[10] Han-Wen Nienhuys. 2011. mftrace. http://lilypond.org/mftrace/
[11] Alessandro Rovetta. 2021. Reliability of Google Trends: Analysis of the Limits and Potential of Web Infoveillance

During COVID-19 Pandemic and for Future Research. Frontiers in Research Metrics and Analytics 6 (2021). https:
//doi.org/10.3389/frma.2021.670226

[12] Bram Stein. 2022. Webfont usage. Fonts | 2022 | The Web Almanac by HTTP Archive (Sep 2022). https://almanac.
httparchive.org/en/2022/fonts#fig-1

10

https://fontforge.org/en-US/
https://docs.python.org/3/glossary.html#term-duck-typing
https://github.com/lark-parser/lark
http://lilypond.org/mftrace/
https://doi.org/10.3389/frma.2021.670226
https://doi.org/10.3389/frma.2021.670226
https://almanac.httparchive.org/en/2022/fonts#fig-1
https://almanac.httparchive.org/en/2022/fonts#fig-1

Prettybird: A DSL for Programmatic Font Compilation PLDI ’23, June 19–21, 2023, Orlando, FL

A CODE SAMPLES

define horizontal_serif(attach_point , face_direction) {

draw vector(attach_point - (10, 0),

attach_point + (10, 0))

draw bezier(attach_point - (10, 0),

attach_point - (10, 0) + (7, face_direction * 4),

attach_point - (10, 0) + (7, 0))

draw bezier(attach_point + (10, 0),

attach_point + (10, face_direction * 4) - (7, 0),

attach_point + (10, 0) - (7, 0))

}

define vertical_serif(attach_point , face_direction) {

draw vector(attach_point ,
attach_point + (0, 10))

draw bezier(attach_point + (0, 10),

attach_point + (face_direction * 10, 3),

attach_point + (0, 3))

}

char I {

base { blank(48, 72) }

steps {

draw filled rectangle ((21, 12), (27, 52))

horizontal_serif ((24, 12), 1)

horizontal_serif ((24, 52), -1)

}

}

char T {

base { blank(48, 72) }

steps {

draw filled rectangle ((21, 12), (27, 52))

draw filled rectangle ((6, 9), (42, 12))

horizontal_serif ((24, 52), -1)

vertical_serif ((6, 9), 1)

vertical_serif ((42, 9), -1)

}

}

Fig. 9. Definitions for a full horizontal serif and a half vertical serif, used to create "I" and "T" glyphs

11

PLDI ’23, June 19–21, 2023, Orlando, FL Anonymous

Prettybird Code Sample METAFONT Code Sample
char I {

base {

blank(48, 72)

}

steps {

draw vector ((24, 6), (24, 42))

draw bezier ((18, 7), (18, 43),

(20, 24))

draw vector ((18, 7), (24, 6))

draw vector ((18, 43), (24, 42))

}

}

mode_setup;

em#:=10pt#; cap #:=7pt#;

thin #:=1/3 pt#; thick #:=5/6 pt#;

o#:=1/5 pt#;

define_pixels(em,cap);

define_blacker_pixels(thin ,thick);

define_corrected_pixels(o);

curve_sidebar=round 1/18em;

def test_I(expr code ,trial_stem ,trial_width) =

stem #:= trial_stem*pt#; define_blacker_pixels(stem);

beginchar(code ,trial_width*em#,cap#,0); "The letter I";

penpos1(stem ,15); penpos2(stem ,12); penpos3(stem ,10);

x1=x2=x3=.5w; y1=h; y2=.55h; y3=0; x2l :=1/6[x2l ,x2];

penstroke z1e..z2e{down }..z3e;

penlabels (1,2,3); endchar; enddef;

Fig. 10. Code samples and generated capital "I" glyphs presented in the survey

Prettybird Code Sample METAFONT Code Sample
char a {

base {

blank(90, 70)

}

steps {

draw bezier ((90, 0), (50, 60),

(90, 50))

draw bezier ((50, 60), (0, 40),

(10, 70))

draw bezier ((0, 40), (20, 10),

((1 - 2) * 5, 10))

draw bezier ((20, 10), (40, 30),

(40, 10))

}

}

p := (90,0) .. controls (90 ,20) and (70 ,50) ..

(50 ,60) .. controls (30 ,70) and (7,61) ..

(0,40) .. controls (-5,25) and (5,10) ..

(20 ,10) .. controls (32 ,10) and (40 ,18) ..

(40 ,30);

draw p

Fig. 11. Code samples and generated spiral glyphs presented in the survey

12

	Abstract
	1 Introduction
	1.1 Language Design
	1.2 Compiler Implementation
	1.3 Study on Preference of Prettybird over Metafont

	2 Background
	2.1 Characters and Fonts
	2.2 Hinting
	2.3 Kerning
	2.4 Existing Font Programming Approaches

	3 Motivating Example
	4 Prettybird
	4.1 Language Overview
	4.2 Number Data
	4.3 Atoms
	4.4 Functional Behavior
	4.5 Hinting and Kerning

	5 Evaluation
	6 Conclusion and Future Work
	References
	A Code Samples

