
Quarterly LangSec Review #1
Dancing, Type Systems, and Quantum Computers

Charles Averill

Dallas Hackers Association

September 2024

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024



Compilers

Choral: Object-Oriented Choreographic Programming

A choreography is a coordination plan between many parties - e.g. a
block cipher, authentication protocol - like interface for distributed
systems
Choral is new PL designed for implementing choreographies, better
than previous solutions b/c it has first-class knowledge of ”data
distributed across roles”
Choral compiler translates your choreography into Java
implementations of each role of the choreography - first-class
choreography knowledge allows for unique optimization, therefore
efficient distributed algorithms
Example implementations: Mergesort, SSO, transmitting healthcare
IoT vitals (PHI)

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://arxiv.org/abs/2005.09520


Compilers

Choral: Object-Oriented Choreographic Programming

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://arxiv.org/abs/2005.09520


Compilers

Boosting Compiler Testing by Injecting Real-World Code

∃ random program generators that we use to test optimizing
compilers, but they kinda suck - difficult to generate programs that
make rich use of more complex syntactic/semantic features of
language
Idea: let’s extract code from real, production-level projects (web
servers, operating systems, desktop apps, etc.) and use that as tests
for our compilers
This is tough - identifiers have scopes and C has DMA, so data
dependencies are hard to track
Solution: extract individual functions, call them within some ”seed”
code, and use dynamic execution info to provide args to the function
calls
Allows for testing compilers with human-written code on a large
scale

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://dl.acm.org/doi/10.1145/3656386


Compilers

Daedalus: Safer Document Parsing

Parsers are the target of un-countably many vulnerabilities because a)
we write them all the time (foundation of computer science as a
practice) and b) humans suck so bad at writing parsers
If we can’t be trusted to write safe parsers, there should be a tool
that we can use to write them - enter Daedalus, a DSL for writing
safe binary file parsers
Generates parsers in C++ and Haskell
Paper provides 20 implementations to common binary formats,
including a PDF implementation that has been red-teamed by the
Adobe foundation and is shown to be significantly less buggy than
existing parsers!
Paper also provides static analysis tools that can detect potential
code injection sectors of your binary format
Start using this tool now!

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://dl.acm.org/doi/10.1145/3656410


Verification

RefinedRust: A Type System for High-Assurance
Verification of Rust Programs

Rust has a rich type system that makes guarantees about memory
safety, although this can be turned off in unsafe mode
Many verification tools utilize Rust’s type system to give users ability
to write proofs about their code, but they do not support unsafe
mode
RefinedRust is a refinement type system, verified secure in Coq, that
allows for semi-automated proofs about arbitrary Rust code -
including unsafe mode
A refinement type system is halfway to dependent typing - it allows
for applying arbitrary logical predicates to data types (e.g. ”int that is
greater than 0” rather than just ”int”)
Paper provides verified Vec implementation that uses unsafe
pointer manipulation practices

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://dl.acm.org/doi/10.1145/3656422
https://dl.acm.org/doi/10.1145/3656422


Verification

Live Verification in an Interactive Proof Assistant

Standard formal verification workflow:

Write Code Verify Code Proven Correct
Believed Error-Free

Errors found - Fix and Refactor

This can cumbersome for large code because errors found are complex
Paper provides what is essentially a REPL for verified C software
development - write a line of code, get immediate feedback from
Bedrock2 (Coq-based C verification tool) about symbolic state of
program and provide proof tactics in C comments to modify proof
state

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://samuelgruetter.net/assets/liveverif-camera-ready-2024-04-06.pdf
https://github.com/mit-plv/bedrock2


Algorithms

Input-Relational Verification of Deep Neural Networks

We want to verify input-relational properties (a property that states
something about the output of a corresponding input) of DNNs -
difficult because that reasoning requires thinking about many runs of
same DNN
Key insight - new representation of input-relational problem, DiffPoly,
that allows for computation of differences in outputs between a pair
of DNN executions
Paper also provides RaVeN, a verification framework that utilizes
DiffPoly to find data dependencies between layers (better than
previous tools) which scales up to describing the behavior of the
entire network

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://dl.acm.org/doi/abs/10.1145/3656377


Algorithms

The Functional Essence of Imperative Binary Search Trees

When you learned tree algorithms, you saw stuff like
1: function BinarySearch(A,n, x)
2: low ← 1
3: high← n
4: while low ≤ high do
5: mid← ⌊(low + high)/2⌋
6: if A[mid] = x then
7: return mid
8: else if A[mid] < x then
9: low ← mid+ 1

10: else
11: high← mid− 1
12: end if
13: end while
14: return NOT FOUND
15: end function

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://dl.acm.org/doi/10.1145/3656398


Algorithms

The Functional Essence of Imperative Binary Search Trees

Key observation: this is an imperative algorithm - they are difficult to
verify because they require difficult intuition about partial correctness
of algorithm w.r.t. subtrees
We should have performant functional counterparts to imperative
tree algorithms - they are much easier to formally verify
That’s what this paper does! It provides novel functional algorithms
for accessing and inserting in a restructuring BST (move-to-root,
splay, zip, etc.)
Provided algorithms are formally verified in Coq via the Iris platform
(used for verifying concurrent code) and are shown to be nearly as
performant as standard, imperative C implementations

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://dl.acm.org/doi/10.1145/3656398


Algorithms

Qubit Recycling Revisited

Quantum circuits pass some number of qubits (bits that can be in a
superposition of 0 and 1) through gates that inplace-modify the
states of said qubits
Qubits are really hard to create and maintain, and the more logical
qubits you want, the more error-correcting qubits you need - ergo,
reducing the width (number of qubits) of a quantum circuit is useful
This paper revisits qubit recycling, which reuses qubits that have
already been discarded/deallocated/measured - seems simple, but
O(n!) possible ways to reuse qubits!
New solution for recycling uses a novel comparison to a known
matrix-triangularization problem, proves that it’s NP-Hard, gives a
solver that finds the optimal solution for the majority of circuits
tested, and is formally verified in Coq to maintain circuit
semantics! Wow!

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://dl.acm.org/doi/10.1145/3656428


Thank you!

Questions?
Slides available on my website:
https://seashell.charles.systems/teaching
CSG CTF is seeking corporate sponsorship - we were the 8th-best
university in the country last semester!
Talk to me if you’ve ever worked on/reasoned about voting software

Charles Averill (DHA) Quarterly LangSec Review #1 September 2024

https://seashell.charles.systems/teaching

	Compilers
	Verification
	Algorithms
	

