
Dr. BrickMachine, or: How I Learned to
Stop Worrying and LoveHate The Apache

HTTP Server Project

Charles Averill

This is my
website:
https://www.charles.systems

https://www.charles.systems

It Does What I Need

● Host my Resume
● Show off writeups/code for my favorite projects
● Send static data to the people who want to know more

about me

What It Used To Be

● For a long time it was hosted on Github Pages
● GH Pages did exactly what I needed, and I could hook up

my cool custom URL
● I could just push to my website repository and have an

update within a few minutes

Issues

I like GH Pages. But it has some issues:

● No dynamic content
● Repository size limits
● I got tired of reloading the Action that published the

new site

Solution

I will self-host my own web server! Shouldn’t be too hard:

1. Buy a cheap machine
2. Install Ubuntu Server
3. Install Apache
4. Update DNS Records

Attempt #1

● Bought the machine in August
● Half set up the server
● School started
● Attempt dead

Attempt #2

● Reinstalled Ubuntu Server
● Was humbled by my previous attempt, so I was more

obedient to tutorials
● It worked! Self-hosted website that sits next to my

couch and has secondary function of drink holder
● Still using Github as a remote, centralized server so

that I can update my website from anywhere that I’m
authenticated at

Where it Went Wrong

Game Development Project

● Rebuilding a now-defunct
mobile game whose servers
have been taken offline

● It’s really big (200MB)
● It is a good thing I am

hosting my own web
server!

● https://www.charles.systems/AT_CWD

https://www.charles.systems/AT_CWD

Game Development Project

● Initially, project source is public but I’m not
accepting PRs until it grows a little bit. Therefore,
code lives on my desktop with no version control

● Eventually, I’m considering allowing PRs
● All of my professors who have done research set up

Gitlab instances for their students to use. OK, I’ll do
that

Nope!

Gitlab was mean to me

● Gitlab initially seemed promising: cool UI, PR support,
user accounts, public access

● Unfortunately, its git server would not cooperate with
Apache!

● Maybe it was because I was using a subdomain instead of
a standard URL path (git.charles.systems) for the gitlab
instance? Probably not, I tried a standard path as well

● Oh well. Surely one of the other available git frontends
will work

Nope!

Gitea and GOGS were mean to me

● Neither would progress past the database
setup/installation page

● Normally I would not let this stop me, but I was tired

It’s Time to Go Old School

● Who needs a UI?
● People have been

sharing code remotely
for *dozens* of months

● I will just host a
plain-Jane git server,
no frou-frou pull
requests, just old
school badass ssh
access

How will people clone the repo?

● I don’t want people to make accounts on my machine,
people break things

● I will make a ‘public’ user with readonly access to the
files I explicitly specify

● I’m a pro linux user of 6 years, I will do this by
memory (surely a good idea)

What I Did

● useradd public
● passwd public # set the password to ‘public’

Okay, this is fine

What I Did

● useradd public
● passwd public # set the password to ‘public’
● sudo

Okay, sure I need sudo sometimes

What I Did

● useradd public
● passwd public # set the password to ‘public’
● sudo chmod

Okay I can see the thought process here, we want to
restrict the public user’s access

What I Did

● useradd public
● passwd public # set the password to ‘public’
● sudo chmod -rwx

(Oh no)

What I Did

● useradd public
● passwd public # set the password to ‘public’
● sudo chmod -rwx /home

(Oh no...)

What I Did

● useradd public
● passwd public # set the password to ‘public’
● sudo chmod -rwx /home /var /srv

(Oh no...)

What I Did

● useradd public
● passwd public # set the password to ‘public’
● sudo chmod -rwx /home /var /srv /usr

(OH NO)

My Intention

Make it so that the ‘public’ user has no permissions in
those directories (so that I can explicitly add permissions
as I desired)

What I Forgot

● ‘chmod’ can’t set permissions for an individual user
● All non-builtin bash commands live in /usr
● Ubuntu Server has root login disabled by default
● I didn’t make any other accounts on the system

This Sucks... But It’s Salvageable

● After recognizing my defeat for what it was, I had some
cereal and reflected on my poor decisions

● “Oh well, all that Apache setup down the drain. But at
least I know how to do it. I guess I’ll reinstall my
operating system and start over. All of my actual
content is still backed up to Github, I just have to
configure everything again.”

● WAIT

A Better Fix

● I was two clicks from wiping my drive and reinstalling
Ubuntu when a friend suggested using ‘chroot’ to replace
the original permissions

● New plan:
a. Create Ubuntu Desktop live boot (UServer doesn’t come with a live

boot distro)
b. ‘mount /dev/sda /mnt/recover && chroot /mnt/recover’

within UDesktop live boot to become root user in UServer’s
filesystem

c. ‘chmod +rwx /home /var /srv /usr’ to replace the broken permissions

That worked!

● Everything back to normal
○ Mostly, ~/.ssh was given full permissions, so my cron job that

pulls from Github kept crashing because my ssh key was not
protected enough. Quick fix though.

● Properly set permissions with ‘setfacl’ instead of chmod
● My fans can now download the code with:

git clone public@71.132.166.91:/srv/git/cwd.git

password is ‘public’

What I Learned

● Don’t be stupidreckless
● Don’t blindly mess with

permissions
● Web server administration is

not something I want to
become proficient at

● Apache Sucks Ass. None of
this would’ve happened if it
had let me configure gitlab
properly!

