
Public-Key Cryptography

Charles Averill, Marty Vaneskahian

CSG CTF Bootcamp
The University of Texas at Dallas

October 2025

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Asymmetric Ciphers

Asymmetric Encryption Overview

Looked at symmetric cryptography last week, where key is same for
encryption and decryption - very convenient but not always practical
What if it’s not convenient or safe to distribute my encryption keys to
the people I want to be able to securely communicate with?
Key Idea: What if we encrypt with a public key that everyone can
know, but decrypt with a private key that only the decrypter knows?

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Asymmetric Ciphers

RSA Overview

RSA is the classic PKC algorithm and will serve nicely as an
introductory example
Phases: key generation, distribution, encryption, and decryption
Public, private keys: (n, e), (n, d) - n is RSA module, e is encryption
exponent, d is decryption exponent

Key generation:
1. Select two distinct, large prime numbers p, q

2. n := p · q
3. Select e s.t. e is coprime1 to ϕ(n)2

4. Select d s.t. (e · d) mod ϕ(n) = 1 with Extended Euclidean Alg.
Key distribution: just distribute public key

1coprime(n,m) ≡ GCD(n,m) = 1
2ϕ(n) ≡ |{x|x ≤ n ∧ coprime(x, n)}|

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Asymmetric Ciphers

RSA Encryption and Decryption

Public, Private keys: (n, e), (n, d)
Encryption: c = me mod n
Decryption: m′ = cd mod n

Generate random symmetric key k
Encrypt message with k to get Em

Encrypt k with RSA to get Ek

Send (Ek, Em), receiver decrypts Ek to decrypt Em to get message

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Asymmetric Ciphers

Security Basis

The security of RSA rests on two mathematical assumptions:
1. Very hard to factor a large semiprime number n = p · q
2. Knowing only (n, e), it is infeasible to compute private exponent d

If an attacker could factor n, they could compute

ϕ(n) = (p− 1)(q − 1)

and recover d = e−1 mod ϕ(n)

No known efficient algorithm for factoring large semiprimes
Key sizes:

2048-bit RSA ≈ 112-bit symmetric security
4096-bit RSA ≈ 128-bit symmetric security

Quantum risk: Shor’s algorithm can factor efficiently on a large
quantum computer, breaking RSA entirely

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Asymmetric Ciphers

Use Case: TLS

Transport Layer Security (TLS) secures HTTPS
RSA historically used in TLS for two purposes:

1. Key exchange: client generates a random session key, encrypts it with
server’s RSA public key

2. Authentication: server proves its identity by presenting RSA-signed
digital certificate issued by a trusted CA

Resulting shared symmetric key used to encrypt session data
Limitations:

No forward secrecy: if private key is later compromised, past sessions
can be decrypted
Modern TLS (1.3) replaces RSA key exchange with Elliptic Curve
Diffie–Hellman (ECDHE), while keeping RSA or ECDSA for
authentication

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Asymmetric Ciphers

Use Case: TLS

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Key Exchange

Key Exchange Overview

Sometimes we want to use symmetric encryption, but we haven’t
shared keys beforehand and we only have an insecure channel - how
to share keys?
Before asymmetric encryption was invented, this was pervasive
Key exchange protocols describe how to safely share keys over
insecure channels

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Key Exchange

Diffie-Hellman Key Exchange

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Key Exchange

Key Exchange and RSA

Why bother with key exchange algorithms when we have asymmetric
encryption?
RSA is way slower than AES
RSA keys are huge and using it everywhere would waste bandwidth
If RSA private key is ever compromised, all following traffic is
compromised. With DH, ephemeral keys are possible

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Elliptic Curve Cryptography

Elliptic Curves

An elliptic curve over a finite field Fp is defined by an equation:
y2 = x3 + ax+ b (mod p)

Curve parameters a, b must satisfy 4a3+27b2 ̸= 0 (no singular points)
Points on the curve form can combine to form other curve points

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Elliptic Curve Cryptography

Why Elliptic Curves?

Elliptic curves are a structure with a hard problem:
Points on the curve form a group (you can ”add” points together)
Given a point P and a multiple Q = k · P , it’s easy to compute Q from
k (multiplication)
But extremely hard to find k given only P and Q — this is the Elliptic
Curve Discrete Logarithm Problem (ECDLP)

ECC exploits this hard problem to make public-key cryptography:
Private key = k
Public key = Q = k · P
Only someone who knows k can reverse operations

Result: strong security with much smaller keys than RSA

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Elliptic Curve Cryptography

Why Bother with ECC?

ECC offers equivalent security to RSA with much smaller keys
Example comparison (approximate security equivalence):

2048-bit RSA ≈ 224-bit ECC
3072-bit RSA ≈ 256-bit ECC
4096-bit RSA ≈ 384-bit ECC

Advantages:
Lower bandwidth
Faster computations
Less storage and energy consumption (ideal for mobile/IoT)

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Elliptic Curve Cryptography

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Security of ECC relies on the ECDLP:

Given P,Q = k · P, find k

P is a point on the curve, Q is a multiple of P , k is unknown scalar
No known efficient classical algorithm to solve ECDLP for large curves
Quantum risk: Shor’s algorithm breaks ECC as well, similar to RSA

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

Elliptic Curve Cryptography

ECC Key Exchange

Elliptic Curve Diffie–Hellman (ECDH) allows two parties to derive
a shared secret
Process:

1. Agree on curve E and base point G
2. Alice chooses secret a, computes A = a ·G
3. Bob chooses secret b, computes B = b ·G
4. Exchange A and B, compute shared secret:

S = a ·B = b ·A

Shared secret can then derive symmetric session keys for fast
encryption (AES)

Charles Averill, Marty Vaneskahian (CSG) Public-Key Cryptography October 2025

	Asymmetric Ciphers
	Key Exchange
	Elliptic Curve Cryptography

