
Syllabus
Practical Compiler Design

Charles Averill

Spring 2023

E-mail: charles@utdallas.edu Web: https://charles.systems/PCD
Class Hours: Monday, Wednesday 1:00PM - 2:15PM Office Hours: MW 2:15PM - 3:30PM
Class Room: TI Auditorium (1/23 - 2/1), ECSS 3.910 (2/6 - end) Course Number: N/A

Course Description

This course will provide a near-comprehensive introduction to compiler design, and will focus on code
generation. This course will not provide credit for any degree from the University of Texas at Dallas or any
other university. Upon completing this course, students will be rewarded with the University of Texas
at Dallas Certification in Practical Compiler Design.

By the end of this course, students will have built a functioning compiler for either a subset of C should
they choose to follow along with the course material, or their own imperative programming language should
they choose to do so.

This course will briefly cover popular compiler design technologies, such as flex and bison, but will not
use them in the material. Instead, a scanner and parser will be built from scratch. Students are given
free reign to implement functionality in their compiler as they see fit, so implementation of these popular
technologies is allowed. From-scratch implementation is encouraged, however, to ensure that students have
a better working understanding of the internals of a basic compiler.

Soft Prerequisites (not required)

CS2337 or equivalent experience in an imperative programming language (C, C++, Java, Python, etc.).
The course will be taught in Python, so familiarity is encouraged. However, confidence in another language
will suffice, as no specific Python features will be important. CS2340 or equivalent knowledge of basic
programming in any assembly language. CS3345 or equivalent knowledge of trees, linked lists, basic
hash tables, basic recursive tree traversal. CS3377 or equivalent knowledge of basic Unix, Bash usage.
Provided course materials assume that the compiler will be built and run on a Linux target, so usage of
the cs1.utdallas.edu server or a physical Linux machine is required, unless students choose to not use
the project base. Basic git knowledge is assumed.

Should course participants request, the instructor will provide a review video covering needed prior knowl-
edge for this course.

1

https://charles.systems/PCD


Practical Compiler Design - Charles Averill

Course Objectives

Successful students will:

1. Design a compiler for either a subset of C or a language of their choice

2. Implement extra features as optional homework

3. Learn how common high-level structures such as loops, conditional statements, functions, and more
can be parsed into Abstract Syntax Trees and mapped to generated LLVM-IR pseudo-assembly code.

4. Learn how to apply simple optimizations to parsed high-level code and abstract syntax trees in order
to improve generated pseudo-assembly code

5. Compare the (relatively) naive approaches presented in this course to production-level approaches
found in compilers like gcc and clang

Optional Materials

• "Compilers: Principles, Techniques, and Tools" - Alfred V. Aho, Ravi Sethi, Jeffrey D. Ullman

• SubC

• ACWJ - DoctorWkt

• LLVM’s "My First Language Frontend"

• LLVM-IR Language Reference Manual

Course Structure

Class Structure

Twice-weekly classes will outline the updates to our compiler that we need to make in order to generate
code for high-level language features, small optimizations we could make (these will not be implemented in
class, as clang will apply optimizations to our generated LLVM-iR when we compile it), and improvements
we can make to our compiler binary to improve user experience and match best software development
practices.

Assignments

Homework assignments will be optional extensions we can add to our language. Completing assignments is
strongly encouraged, as it will provide students an opportunity to branch out and customize their language
and compiler. Homework assignments can be submitted to be reviewed by the instructor once weekly or
after class.

Class Project

The main goal of this course is for students to have a functioning, hand-built compiler by the end of the
course. Because grading is optional, there is no requirement for students to compile any specific language,
or to write the compiler in any specific language. A project base will be provided to offer argument parsing,
documentation generation, and automatic testing, but it is not required for students to use the project
base. Completion of any 70% of the selected topics (including required topics listed in the Calendar) is
required to receive a certification.

2

https://github.com/KnowNo/books-7/blob/master/Programming/Compilers%20-%20Principles%20Techniques%20and%20Tools%20by%20Alfred%20Aho%20-%20Monica%20Lam-%20Ravi%20Sethi-%20Jeffrey%20Ullman%20-%20Second%20Edition.pdf
https://www.t3x.org/subc/index.html
https://github.com/DoctorWkt/acwj
https://llvm.org/docs/tutorial/MyFirstLanguageFrontend/index.html
https://llvm.org/docs/LangRef.html


Practical Compiler Design - Charles Averill

Calendar

The order of later topics is subject to change. After week 4, much of the higher-level constructs can be
implemented in any order. Bolded topics are required to earn the certification.

Week Dates Content Optional Assignments
1 Jan 23, 25 Scanning, Parsing, Precedence Bit-shifting operators
2 Jan 30, Feb 1 Basic code generation, Basic print statements,

Global variables, Comparisons, If statements,
While loops

While-else loops

3 Feb 6, 8 For loops, Integer types, Functions Boolean value printing
4 Feb 13, 15 Pointers, Revisiting global variables, Type checking,

Pointer offset scaling
Character literals

5 Feb 20, 22 Revisiting Lvalues, Naive arrays, String literals,
Prefix and postfix operators

Binary logical operators

6 Feb 27, Mar 1 Local variables, Function parameters and argu-
ments, Function prototypes

N-base integer literals

7 Mar 6, 8 Restructuring and refactoring, Introduction to structs
and unions

8 Mar 13, 15 Structs, unions, typedefs Enums
9 Mar 20, 22 Break, continue, switch External Preprocessor
10 Mar 27, 29 Refactoring compound statements, refactoring vari-

able assignments, type casting
11 Apr 3, 5 Revisitng operators, Basic optimizations, Revisit-

ing global declarations, Void function parameters
12 April 10, 12 Static, Ternary operators, Cleanup Sizeof
13 April 17, 19 Revisiting arrays and pointers, More cleanup, Lazy

logical operator evaluation
Consecutive switch cases

14 April 24, 26 Revisiting local arrays, General cleanup Triple Test
15 May 1, 3 Custom language presentations Relax

3



Practical Compiler Design - Charles Averill

Course Policies

During Class

I understand that the electronic recording of notes will be important for class and so computers will be
allowed in class. Please refrain from using computers for anything but activities related to the class. Eating
and drinking are allowed in class but please refrain from it affecting the course. Try not to eat your lunch
in class as the classes are typically active.

Attendance Policy

There is lots of material to cover, so please attend all classes in order to stay up. If you miss a class,
reviewing the related ACWJ topics is a good way to catch back up.

Recording

The course lectures will be recorded and uploaded to YouTube for student convenience.

Academic Integrity and Honesty

Please don’t copy code from ACWJ if you can help it. It’s tempting because we’re following its evolution
very closely, but it’s a lot more fun and rewarding to implement everything based on what you learn in
class. The ECCO source code also implements everything we talk about in class, please don’t copy from
there either.

UTD Syllabus Policies and Procedures

The information contained in the following link constitutes the University’s policies and procedures segment
of the course syllabus. Please go to http://go.utdallas.edu/syllabus-policies for these policies.

4

https://github.com/DoctorWkt/acwj
http://go.utdallas.edu/syllabus-policies

