Arithmetic and Stack Optimizations
Lecture #11

Charles Averill (UTD) Arithmetic and Stack Optimizations

The Current State of the Compiler

(base) charles@nostromo:~/Desktop/ecco$ cat examples/test9
int main() {
i a; int b;
c; int d;
*e; int *f;

18; print a;
&a; b = *e; print b;

12; print c;
&c; d = *f; print d;

g; int *h; int **j; int ***k;
5; h = &g; ; k= &j;
n; int *m; 1
*k; m = *1; n

print n;

}
(base) charles@nostromo:~/Desktop/ecco$./scripts run examples/test9 && clang test9.ll -o test9 && .

Charles Averill (UTD) Arithmetic and Stack Optimizations 2/10

Optimizations

Optimizations are modifications to either parsed ASTs or generated LLVM
that aim to retain identical runtime behavior, but reduce binary size or
increase runtime speed.

Optimizations that deal with ASTs are often recursive (one that we'll look
at today will be), but often they can be applied as soon as a statement is
parsed (we will look at some of these optimizations later on).

Because we have a recursive AST traversal, we are subject to DFT
complexity, a.k.a. O(V + E). We will see that this greatly increases
compile-time when we compile large files. This compile-time duration
increase is part of why both clang and gcc turn off optimization by
default. We will leave it on, and you will soon see why.

Charles Averill (UTD) Arithmetic and Stack Optimizations 3/10

The Goal

Charles Averill (UTD) Arithmetic and Stack Optimizations

The Plan

Charles Averill (UTD) Arithmetic and Stack Optimizations

Arithmetic Expression Folding

If we want to compile the statement print 1 + 2 - 3 * 4 / 5;,
there's really no good reason why any computations should be performed
at runtime. This expression should have the same value today as it does in
a million years, it doesn’t rely on any variables or configurations of the
compiler. Therefore, we can "fold" the expression down into its value (1)
at compile-time, so that we don't waste any time at runtime computing
what is functionally identical to an integer literal.

This works for purely constant sub-expressions as well. print 1 * 2 + x
- 4 / 5; shouldn't compute 1-2 and 4 -5 at runtime.

Charles Averill (UTD) Arithmetic and Stack Optimizations 6/10

Expression Folding Rules

Charles Averill (UTD) Arithmetic and Stack Optimizations

Stack Allocation Reduction

There is no good reason why we should allocate a register on the stack,
store a constant value into that register, load that register's contents into
a new register, and then use the value. We did this to learn the ins and
outs of basic LLVM pointers, but now we should fix it so that this:

alloca i32, align 4
alloca i32, align 4
i32 0, i32% Y52
load i32, i32% %52

i32 3, i32x* %51
= load i32, i32* %51
add nsw i32 %53, %54

becomes this:

%51 = add nsw i32 0 3

(ignoring our previous optimization) D

Charles Averill (UTD) Arithmetic and Stack Optimizations 8/10

LLVMValueType.CONSTANT

I've added an LLVMValueType.CONSTANT type that allows us to
short-circuit a bunch of our redundant stores/loads.

Consequences:

Everywhere we printed a "%" is now wrapped in a conditional to
check if we're actually dealing with a register or not

llvm_resize acts solely as a truncate function for constants

A bunch of register loading is now conditional

Charles Averill (UTD) Arithmetic and Stack Optimizations 9/10

Success!

(base) charlesaverillapop-os: $ time ./scripts run examples/arith_test -00 --output unoptimized.1l && wc -1 unoptimized.ll

real om1.009s

user Ome.965s

sys ome.042s

19052 unoptimized.ll

(base) charlesaverillapop-os: $ time ./scripts run examples/arith_test -01 --output mid_optimized.ll & wc -1 mid_optimized.1l

om14.550s
om14.507s
ome. 0445
524 mid_optimized.1l
(base) charlesaverillapop-os: $ time ./scripts run examples/arith_test -02 --output full_optimized.ll && wc -1 full_optimized.1l
-----RUN-----

om5.156s
om5.128s
omoe.028s

524 full optimized.ll

Charles Averill (UTD) Arithmetic and Stack Optimizations 10/10

