
Function Declarations and the char Type
Lecture #08

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Function Declarations and the char Type 1/11



The Current State of the Compiler

In our previous lecture, we introduced if statements, while loops, and for
loops into our language:

Charles Averill (UTD) Function Declarations and the char Type 2/11



The Goal

Today we have a fairly small goal that will require a fair amount of
refactoring: function declarations (actually function declaration, we’re only
supporting 1 function right now):
void main() {

int fred;
int jim;

}

(I finally get to use C syntax highlighting! Yay!)

Previously I explained that all of our compound statements would be
surrounded by braces. This is why; the vast majority of statements in C
must be made inside of a function definition. We could just add a specific
parser for the function declaration grammar, but we should probably
work ahead to make sure our type system can handle more complex
definitions in the future.

Charles Averill (UTD) Function Declarations and the char Type 3/11



The Plan

Add a function declaration parser

Modify our type system so that we can store function return types

Update our preamble/postamble generators to support multiple
function declarations in the future

Add the char type and the framework for adding more types in the
future

Charles Averill (UTD) Function Declarations and the char Type 4/11



Function Declaration Parser

We have to hardcode some behavior for now. Specifically, our only function
type will be void, as we haven’t implemented return statements yet. Also,
we won’t support function arguments for a while, so we’ll just match an
open and close parenthesis. After the function header we can just call
parse_statements() and store the result into a Function ASTNode.

You might notice we’ve updated the return type of match_token; this ties
into the char type updates that we’ll see later.

Charles Averill (UTD) Function Declarations and the char Type 5/11



Type System Updates

Take a look at generation/types.py. I’ve added Number, Function,
and Type classes, and relocated NumberType. These functions are going
to better store information about variables and functions to make sure
we’re not mixing and matching where we shouldn’t.

The Type class is actually going to store a value as well, which gets a bit
confusing as we’ll see, but that’s just what happens when you’re dealing
with type systems.

We’ve updated the Symbol Table class to accept a Type object as a value
now. This will allow us to register both variables and functions in our table
in the future.

Charles Averill (UTD) Function Declarations and the char Type 6/11



Generator Updates

We actually don’t have to update our generator that much, because we’re
only adding support for a main function right now, which is sort of what
we’ve had the whole time. But let’s work ahead and ensure that we’ll be
safe when we start generating code for multiple functions.

In generate/translate.py, we’ve added a case in our ”special token
types” section for TokenType.FUNCTION. We see that we now generate a
preamble here, then we do stack allocation, then the code within the
function, then its postamble, then return. Previously, we were generating
preambles and postambles in the main generator loop.

Charles Averill (UTD) Function Declarations and the char Type 7/11



Funny Story

While writing this lecture, I referenced my Purple function generation
code. I still generated stack allocation statements in the main generator
loop, which would cause my alloca statements to be printed before the
function preamble.

To solve this problem, I created a ”buffered_stack_allocations” array to
hang onto any allocation statements that tried to generate before a
function had its preamble generated. This worked and I moved on.

Looking back on that code while I wrote this lecture, I wondered why I
didn’t just move the allocation generation function call to right after the
preamble generation call. That’s what ECCO does, and it works! Don’t
overengineer if you don’t have to.

Charles Averill (UTD) Function Declarations and the char Type 8/11



char type

Let’s add in another datatype to see what the process is like. We won’t
add in char parsing yet, but we will do that pretty soon. A few steps:

1. Add a char token

2. Un-hardcode declaration_statement

3. Minor generator updates

Charles Averill (UTD) Function Declarations and the char Type 9/11



declaration_statements

I mentioned that we updated the return type of match_token. Now it’s
returning both the previously scanned token’s value AND its token type.
But aren’t we matching the type we expect? Kind of.

Now we’re matching multiple types, any of the data types we could expect
during a variable declaration. So, we’ll pass in a list containing the INT
and CHAR token types, and then receive the type that it matched to.

Charles Averill (UTD) Function Declarations and the char Type 10/11



Generator updates

A lot of our LLVMValues expected integers, so there are a few places we
need to update by passing in NumberTypes.

And that’s it!

Charles Averill (UTD) Function Declarations and the char Type 11/11


