
Statements
Lecture #04

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Statements 1/11



The Current State of the Compiler

We can now compile arithmetic expressions to LLVM, which we can pass
to the clang compiler and then execute as a binary.

This is very cool, but there are some limitations. We can only have one
arithmetic expression per file. Also, our expressions are auto-printed - this
could be fine for some kinds of programming languages, but in C we
usually want to be as explicit as possible in how we describe our program
to the computer. Therefore, we should make an explicit print statement so
that expressions don’t have any ”hidden print” meaning behind
them. We’ll also set up the groundwork for more complex
statements in the future.

Charles Averill (UTD) Statements 2/11



Planning our Changes

We’re going to modify our language to support print statements that look
like this: print 1 + 2 * 3;

That’s not what C looks like! But we’ll fix that later. This is going to let
us lay the groundwork for complex statements, like variable assignments in
the next lecture.

We’ll need to add print and semicolon TokenTypes and modify our parser
to support checking for multi-length tokens. We’ll also need to tell the
parser not to stop scanning/parsing at EOF, but rather at each semicolon.

Finally, we’ll perform some small structural changes to combine statement
parsing with continual LLVM generation. Let’s do it!

Charles Averill (UTD) Statements 3/11



Quick BNF Update

statements: statement
| statement statements

statement: "print" expression ";"

expression: add_expression

add_expression: mul_expression
| add_expression "+" mul_expression
| add_expression "-" mul_expression

mul_expression: INTEGER_LITERAL
| INTEGER_LITERAL '*' mul_expression
| INTEGER_LITERAL '/' mul_expression

Charles Averill (UTD) Statements 4/11



Scanner Updates

Previously, I’ve started out by saying ”let’s check out what changed in
ecco/ecco.py.” But we’re pretty familiar with the structure of the project
now, and we’ve already planned out our changes. So let’s look right at the
scanner changes in ecco/scanning/ecco_scanner.py.

Adding TokenTypes PRINT and SEMICOLON is trivial. However there are
some fairly large changes in Scanner.scan(). I’ve moved our checking for
token types into the TokenType class for coherence. If there is a match,
store the type into our global token and continue; otherwise check for
integer literals, or our new addition: identifiers.

Identifiers could be keywords like ”for”, ”int”, ”struct”, or they could be
variable names like ”x” or ”count”. In short, identifiers are multi-character
Tokens. In our C implementation, identifiers can start with an
alphabetic character or an underscore.

Charles Averill (UTD) Statements 5/11



Scanner Updates

You can take a peek into scan_identifier() if you’d like, but this is
another implementation detail, feel free to copy it. Remember that in C,
identifiers can have numbers in them as long as they aren’t the first
character in the identifier. I’ve also added a length maximum to identifiers,
this handles some bugs in the future.

Charles Averill (UTD) Statements 6/11



Expression Parser Updates

Next, let’s see the update for our expression parser. We add some checks
for semicolons, either in place of or addition to checks for the EOF, but
the logic remains the same.

Charles Averill (UTD) Statements 7/11



Statement Parser

Now we have to parse statements. Because our statements are so simple
for now, this is a really easy change. Take a look at
ecco/parsing/statement.py. First, let’s look into
parse_statements().

This implements the ”statements: statement | statement statements” rule
of our grammar. While we haven’t reached the EOF, we’re going to check
for a PRINT Token, parse a binary expression, check for a SEMICOLON
Token, then finally yield the expression’s tree.

For those unfamiliar, yield is a Python keyword used in ”generator
functions”. These functions return multiple values over time, using a kind
of ”lazy computation”. This means that after a yield statement, the state
of the generator function is preserved until it is ”reawoken” to generate
another value. range() is a common generator function.

Charles Averill (UTD) Statements 8/11



Integration of Statement Parsing and LLVM Generation

Why use a generator, you are probably asking? In many cases, we want to
perform lazy computation – rather than constructing a list of all the values
we need at once – because the possible size of the resulting list might be
very big. Consider a program in our current language that contains a
million print statements. If we made a list of all of the ASTs in the
program and THEN passed the list to our code generator, we would likely
run out of memory. A generator function allows us to circumvent this and
only store the data we need when we need it.

The consequence of this is that we must move our call to
parse_statements() inside of generate_llvm(). Now, for each root AST
of our program that we receive from parse_statements(), we perform
stack allocation, we compile the AST to LLVM, and we generate a print
instruction. Once we stop receiving ASTs, the loop terminates and
we generate our postamble.

Charles Averill (UTD) Statements 9/11



Wrapping up

Finally, we just have to update ecco/ecco.py so that we call
generate_llvm() rather than explicitly parsing binary expressions or
statements. And tada! We’ve added statement parsing to our compiler.

In the next lecture, we’re going to be adding variable declarations and
instances, allowing us to perform more complex computations without
having to cram it into a line of constants.

Charles Averill (UTD) Statements 10/11



Optional Homework

This week’s optional homework is to implement some kind of complex
mathematical statement of your choosing, and update your parser and
compiler accordingly. The only requirements are that your statement has
to take in an integer value as input, and that the AST generated by the
statement must be a complex expression.

For example, you could write a statement like fibonacci n; that prints
out the nth fibonacci number. In this case I would suggest doing your
fibonacci logic inside of the compiler and converting it to an AST we can
already generate code for, rather than implementing more LLVM features
than what we have now.

Your new statement has to be complex though! Don’t give me square n;
that prints out n2. That’s too easy! Give me something cool!

Charles Averill (UTD) Statements 11/11


