
Parsing, Precedence
Lecture #02

Charles Averill

Practical Compiler Design
The University of Texas at Dallas

Spring 2023

Charles Averill (UTD) Parsing, Precedence 1/19

Checking In

Was everybody able to set up ECCO? I’ll be posting a setup video soon. If
you’re set on using Windows, you’ll have to do some extra work to get the
project running.

Yesterday, we just looked at code. Now it’s up to you to start modifying
it! Please set up your remote git repositories and email me the link at
charles@utdallas.edu

ECCO Setup on CS1:
git clone https://github.com/CharlesAverill/ecco.git
cd ecco
python3 -m pip install --upgrade pip --user
python3 -m pip install poetry --user
python3 -m poetry install
vim scripts
./scripts run --help
vim scripts # Here, you'll have to change every usage of

"poetry" to "python3 -m poetry"
./scripts run --help

Charles Averill (UTD) Parsing, Precedence 2/19

mailto:charles@utdallas.edu

Introduction

The Current State of the Compiler

We can scan in a file of recognized tokens and print out those tokens. We
can also throw an error when we reach an unrecognized token.

This is pretty good. But this doesn’t really do anything! We’ve build a
glorified, verbose, special-purpose regex. Let’s get to parsing, and build a
tiny interpreter along the way before we start generating LLVM
pseudoassembly code in the next lecture.

Charles Averill (UTD) Parsing, Precedence 3/19

Parsing

Parsing

In the last lecture we said we’d start off with natural integer literals, and
the four basic arithmetic operators: plus, minus, multiply, and divide. Our
scanner is already built to recognize these.

Let’s look at ecco/ecco.py to see what’s changed in this iteration.

Charles Averill (UTD) Parsing, Precedence 4/19

Parsing

ecco/ecco.py

Our first big change is that we now have a GLOBAL_SCANNER object.
We’re going to be looking at the current token and scanning new
tokens in multiple places across this project, so we need a shared
object across files.

This required that we don’t use the with ... as syntax we used for
opening the input file, but to be frank that notation is a little
cluttering anyways. Calling GLOBAL_SCANNER.open() and
GLOBAL_SCANNER.close() is a sufficient replacement.

We can see that instead of calling GLOBAL_SCANNER.scan_file() we
call a new function called parse_binary_expression(). Before we
get into this, a cursory review of language grammars and recursive
parsing is necessary.

Charles Averill (UTD) Parsing, Precedence 5/19

Parsing

BNF Grammars

Language designers frequently make use of a recursive notation called
”Backus-Naur Form” (BNF) to describe valid blocks of code in a
language. A set of BNF statements makes up a ”grammar” that describes
all valid inputs to a language.

Our goal is to parse binary arithmetic expressions like 1 + 1 or 5 ∗ 3 + 2,
where an operator is accompanied by expressions on both sides (integer
literals are expressions). Therefore, our BNF grammar will look like this:

expression: INTEGER_LITERAL
| expression "*" expression
| expression "/" expression
| expression "+" expression
| expression "-" expression

Charles Averill (UTD) Parsing, Precedence 6/19

Parsing

BNF Grammars

In this example, ”expression” is called a rule or non-terminal symbol,
while INTEGER_LITERAL is a terminal symbol. It is clear from this
example that our grammar is recursive, as the subrules that deal with our
operators require expressions to be present, while the subrules themselves
are expressions. It is important to note that this grammar does not utilize
precedence as we are used to it, we will introduce this feature soon.

There exist ”compiler compilers” that accept BNF as input, and output
code that parses source code that conforms with the grammar. We won’t
be using a compiler compiler, as parsing is a large part of understanding
how a compiler works. We’ll be writing our own parser, however I will
update the BNF of our language as it gets more complex.

Charles Averill (UTD) Parsing, Precedence 7/19

Parsing

Abstract Syntax Trees

One more important topic to cover before we get into recursive parsing is
Abstract Syntax Trees, or ASTs. ASTs are a simplified representation of an
expression or block of code. Our parser will analyze the tokens scanned by
our Scanner and then construct an AST that represents our entire
program. ACWJ recommends you read this article:
https://medium.com/basecs/leveling-up-ones-parsing-game-with-asts-
d7a6fc2400ff, however I don’t think it’s very necessary. We’ll become
intimately familiar with ASTs as we manipulate them in code.

Let’s look at an AST example, then ecco/parsing/ecco_ast.py to see
how we’ll implement our ASTs. Side note - be careful with how you name
your classes, Python’s interpreter has many scanning and parsing utilities
(The CPython interpreter is bootstrapped, so it has to interpret itself!).
Make sure there aren’t naming collisions, these will throw
confusing errors.

Charles Averill (UTD) Parsing, Precedence 8/19

https://medium.com/basecs/leveling-up-ones-parsing-game-with-asts-d7a6fc2400ff
https://medium.com/basecs/leveling-up-ones-parsing-game-with-asts-d7a6fc2400ff

Parsing

AST Example

2 * 3 + 4 * 5

+

x x

2 3 4 5

When we traverse our AST to generate assembly, we will do a Depth-First
Traversal (DFT), so in this case we will generate the products of (2 and
3), and (4 and 5), and then sum them together. Again, this is ideal
behavior. We haven’t discussed precedence yet, this is just an example of
what we would expect our compiler to do. (Actually, we will gloss
over parsing without precedence, because it’s a fairly easy
problem to solve).

Charles Averill (UTD) Parsing, Precedence 9/19

Parsing

ecco/parsing/ecco_ast.py

We’ve got an ASTNode class. Remember, the ”T” in ”AST” stands
for ”Tree”. In this case, a binary tree (we will expand this later). Our
ASTNode’s data is a Token object, and it has left and right
children that can either be ASTNodes or None.

Notice that we are going to perform a deep copy of the Token object.
The Token in many cases will be GLOBAL_SCANNER.current_token,
which changes over time. If we don’t deepcopy, our ASTNodes will be
filled with references to the latest token read from our input file.

The rest of the initialization is standard for a tree object. We’re
making our trees bidirectional for convenience, so we set the left and
right childrens’ parent to self.

Finally, we have some functions to create specific forms of
ASTNodes. These will become important later on.

Charles Averill (UTD) Parsing, Precedence 10/19

Parsing

Parsing Expressions

So, we want to do recursive parsing. What does a naïve arithmetic parser
look like for the expression 3 + 5 + 6?

1. Compiler starts. At this point, we should always reach a terminal
node! + 3 5 is not a valid expression (we’re only concerned with infix
for ECCO, maybe your compiler is different). In 3 + 5, the valid
equivalent, 3 is a terminal symbol (int literal). So, parse the
terminal token 3. Place it into an AST Node and call it ”left”.

2. If we’ve reached the end of the file, return left as our expression.
Otherwise, scan the next token (should be an operator!)

3. Recursively scan the next expression (start this routine again on the
remaining sub-expression) and call it ”right”.

4. Create an AST Node with left and right as its children, and
the parsed operator as the node’s data.

Charles Averill (UTD) Parsing, Precedence 11/19

Parsing

Testing the algorithm out

1. Scan 3 into an AST Node, call it ”left1”. Scan +, call it ”op1”, recurse

2. Scan 5 into an AST Node, call it ”left2”. Scan +, call it ”op2”, recurse

3. Scan 6 into an AST Node, call it ”left3”. Reached EOF, so return
left3.

4. Construct an AST Node with data op2 and children left2, left3, call it
”temp” and return it

5. Construct an AST Node with data op1 and children left1 and temp,
and return it.

We can see that this routine handles well for this expression. Students may
find it helpful to see that this routine cannot handle precedence, and are
invited to compute the AST for 2 * 3 + 4 * 5 using the routine to
prove this. My implementation, ACWJ implementation.

Charles Averill (UTD) Parsing, Precedence 12/19

https://github.com/CharlesAverill/ecco/blob/02_Parsing/ecco/parsing/expressions.py#L19
https://github.com/DoctorWkt/acwj/tree/master/02_Parser#a-naive-expression-parser

Parsing

Recap

So we’ve written a naïve parser. Soon we will write a tiny interpreter for
our parsed ASTs, but I’d like to implement a parser with precedence first.

We started with a parser without precedence to get your mind thinking
about parsing, we’re about to replace a bunch of what we just talked
about, so don’t bother implementing that stuff!

Question before we move on: who knows a way we could implement
parsing with precedence? (hint: think more recursion)

Charles Averill (UTD) Parsing, Precedence 13/19

Parsing

Precedence

We want our BNF grammar to reflect precedence, so it should look like
this:
expression: add_expression

add_expression: mul_expression
| add_expression "+" mul_expression
| add_expression "-" mul_expression

mul_expression: INTEGER_LITERAL
| INTEGER_LITERAL '*' mul_expression
| INTEGER_LITERAL '/' mul_expression

We could do this by writing a bunch of recursive parsers using the techniques we’ve
already talked about, and chain them together. This is often how ”compiler compilers”
will generate your parser for you. That would be time consuming to write by hand,
and it would be very messy. Fortunately there is another, arguably simpler way to
parse with precedence: Pratt parsing.

Charles Averill (UTD) Parsing, Precedence 14/19

Parsing

Pratt Parsing

Pratt parsing is complicated. It is not as intuitive as recursive descent
parsing, but arguably easier to extend, and more concise. Pratt parsing is
very good at dealing with expressions, while recursive descent is very good
at dealing with structured statements. A good compiler will mix Pratt
parsing and recursive descent parsing where it makes sense.

The general idea behind Pratt parsing is that we have a table of
precedence for operators rather than an explicit function-call order that
encodes precedence. Read this article if you’d like to better understand the
intuition behind Pratt parsers. We won’t go over them too much in depth,
we’re just going to cover our implementation for ECCO.

Charles Averill (UTD) Parsing, Precedence 15/19

https://journal.stuffwithstuff.com/2011/03/19/pratt-parsers-expression-parsing-made-easy/

Parsing

Let’s Implement Parsing with Precedence

First let’s check out ecco/ecco.py. The only change here is that we
passed a 0 to parse_binary_expression(). Let’s inspect this function
and see what’s changed.

parse_binary_expression() actually looks very similar! This is because
Pratt parsing is more or less an abstraction of recursive descent parsing.
We can see that we now take the previous token’s precedence value as
input, and we have a while loop that ensures that the current token
precedence is greater than that of the previous token’s precedence.

Quick aside - we’re using the C Operator Precedence table for ECCO. In
this table, a lower precedence number means that the operator will be
processed first (so multiplication has a lower precedence number than
addition). ACWJ actually does the reverse, so be careful if you
compare the two.

Charles Averill (UTD) Parsing, Precedence 16/19

https://en.cppreference.com/w/c/language/operator_precedence

Parsing

Let’s Implement Parsing with Precedence

Inside of the loop, we’re going to scan the next token, while holding onto
the previous token’s type with the node_type variable. Now, we will
recurse to find the expression on the right hand side of the current
operator. We pass in the precedence value of node_type, as it is our
last-encountered symbol.

After assembling the right-hand-side of the current operator, we join the
two sides into an ASTNode with the operator token as the node’s type. If
we’ve reached the end of the file, we can break the loop and return this
newly-created node, otherwise we’ll feed it back into the loop and continue
parsing.

Charles Averill (UTD) Parsing, Precedence 17/19

Parsing

One last thing!

So we’ve built an AST, now let’s interpret it. This is a small precursor to
how we’ll generate LLVM in the next lecture, just much simpler (and less
powerful).

In ecco/ecco.py, we’ve defined an inline function interpret_ast().
This is a recursive function that will traverse our root ASTNode returned
from parse_binary_expression and perform the appropriate arithmetic
operations on the terminal node data it finds.

We call this function on our parsed AST, and tada! We can find the
answers to simple arithmetic problems. We could’ve written a much
simpler arithmetic calculator to solve this, but we have now laid the
groundwork to compile more and more complex programs. By the
beginning of February, we will have a fairly impressive subset of the C
Programming Language able to be compiled!

Charles Averill (UTD) Parsing, Precedence 18/19

Parsing

End of Week 1

So that’s the end of week 1. The optional homework for this week is to implement left
and right bitshift operators. Comprehensive hint:

1. Create bitshift operator Tokens
2. Add their precedence values to the precedence table
3. Update the tiny interpreter we wrote

This is why Pratt parsing is so cool! To accomplish this with recursive descent parsing
you’d need to write a new function to handle these operators, and you’d end up
duplicating a lot of code.

If you found this week to be a lot of work, don’t worry. Remember, the only due date is
the end of this semester, and you don’t have to complete every topic covered
throughout the semester. This week’s topics and next week’s topics are required, but
you have a long time to finish them. After that, most of what we cover will be optional
(but encouraged). Please come see me during office hours if you have any
questions. I’d love to hear your ideas for your compiler and I would love to help
you out with any classwork questions you might have. Have a good weekend!

Charles Averill (UTD) Parsing, Precedence 19/19

	Introduction
	Parsing

