
The Good, The Bad, and The Binary
Formal Timing and Correctness of Binary Code

Charles Averill

The University of Texas at Dallas & Dartmouth College

August 2024

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Problem

Code has vulnerabilities

We want to be able to catch vulnerabilities before they can be
exploited
We can’t just run the code to find all vulnerabilities, code is too big
We have a lot of ways to heuristically catch and patch large classes of
bugs (e.g. null pointer dereferences) statically
What if the bug patcher misses cases, adds bugs, fails to patch
correctly, etc.?
What if the code being patched is so mission-critical that there can
be no doubt that the code is bug-free?
Dealing with (possibly-handwritten) binary code exacerbates each of
these consideration

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Problem

Code has vulnerabilities
We want to be able to catch vulnerabilities before they can be
exploited

We can’t just run the code to find all vulnerabilities, code is too big
We have a lot of ways to heuristically catch and patch large classes of
bugs (e.g. null pointer dereferences) statically
What if the bug patcher misses cases, adds bugs, fails to patch
correctly, etc.?
What if the code being patched is so mission-critical that there can
be no doubt that the code is bug-free?
Dealing with (possibly-handwritten) binary code exacerbates each of
these consideration

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Problem

Code has vulnerabilities
We want to be able to catch vulnerabilities before they can be
exploited
We can’t just run the code to find all vulnerabilities, code is too big

We have a lot of ways to heuristically catch and patch large classes of
bugs (e.g. null pointer dereferences) statically
What if the bug patcher misses cases, adds bugs, fails to patch
correctly, etc.?
What if the code being patched is so mission-critical that there can
be no doubt that the code is bug-free?
Dealing with (possibly-handwritten) binary code exacerbates each of
these consideration

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Problem

Code has vulnerabilities
We want to be able to catch vulnerabilities before they can be
exploited
We can’t just run the code to find all vulnerabilities, code is too big
We have a lot of ways to heuristically catch and patch large classes of
bugs (e.g. null pointer dereferences) statically

What if the bug patcher misses cases, adds bugs, fails to patch
correctly, etc.?
What if the code being patched is so mission-critical that there can
be no doubt that the code is bug-free?
Dealing with (possibly-handwritten) binary code exacerbates each of
these consideration

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Problem

Code has vulnerabilities
We want to be able to catch vulnerabilities before they can be
exploited
We can’t just run the code to find all vulnerabilities, code is too big
We have a lot of ways to heuristically catch and patch large classes of
bugs (e.g. null pointer dereferences) statically
What if the bug patcher misses cases, adds bugs, fails to patch
correctly, etc.?

What if the code being patched is so mission-critical that there can
be no doubt that the code is bug-free?
Dealing with (possibly-handwritten) binary code exacerbates each of
these consideration

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Problem

Code has vulnerabilities
We want to be able to catch vulnerabilities before they can be
exploited
We can’t just run the code to find all vulnerabilities, code is too big
We have a lot of ways to heuristically catch and patch large classes of
bugs (e.g. null pointer dereferences) statically
What if the bug patcher misses cases, adds bugs, fails to patch
correctly, etc.?
What if the code being patched is so mission-critical that there can
be no doubt that the code is bug-free?

Dealing with (possibly-handwritten) binary code exacerbates each of
these consideration

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Problem

Code has vulnerabilities
We want to be able to catch vulnerabilities before they can be
exploited
We can’t just run the code to find all vulnerabilities, code is too big
We have a lot of ways to heuristically catch and patch large classes of
bugs (e.g. null pointer dereferences) statically
What if the bug patcher misses cases, adds bugs, fails to patch
correctly, etc.?
What if the code being patched is so mission-critical that there can
be no doubt that the code is bug-free?
Dealing with (possibly-handwritten) binary code exacerbates each of
these consideration

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Solution

Build formal models of software
Formally state your correctness specification
Write a proof that your software meets your specification
Employ a machine to check that your proof is correct

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Challenges

Build formal models of software
Which models do you formalize? Languages? Interpreters/Compilers?
CPU semantics? Hardware?
Some languages/compilers/CPUs have no formal specification, many
more have no machine-readable formal specification
The proposition that the model matches the implementation is usually
an assumption and unproven

Formally state your correctness specification
Write a proof that your software meets your specification
Employ a machine to check that your proof is correct

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Challenges

Build formal models of software
Formally state your correctness specification

Correctness specifications are difficult to write and may be
miscommunicated
May contain many layers of abstraction to represent high-level concepts
in a formal environment

Write a proof that your software meets your specification
Employ a machine to check that your proof is correct

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Challenges

Build formal models of software
Formally state your correctness specification
Write a proof that your software meets your specification

Writing formal proofs requires learning a proof language
Proofs about code must handle deep concepts such as decidability and
termination
Reasoning about loops requires non-trivial insight learned by experience

Employ a machine to check that your proof is correct

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



What’s the Deal?

The Challenges

Build formal models of software
Formally state your correctness specification
Write a proof that your software meets your specification
Employ a machine to check that your proof is correct

Can we trust the machine to properly check?

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Bottom-Up vs. Top-Down

High-Level, ISA-Agnostic IL

Disassemble + Lift

Native Machine Code

Proofs of Correctness

Coq

Extract + Compile

High-Level
Source Code

Proofs of
Correctness

Coq

Proofs of
Correctness

Native
Machine Code

Top-Down Formal Methods Bottom-Up Formal Methods

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Bottom-Up vs. Top-Down

Top-down:
Unfit for security retrofitting

Incompatible with low-level tasks
Best case: a high-level software project with formal methods planned
from the start

Bottom-up:
Can be applied to all binary code
Loses nice behavior of high-level languages
Only suitable pathway towards verifying source-free mission-critical
code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Bottom-Up vs. Top-Down

Top-down:
Unfit for security retrofitting
Incompatible with low-level tasks

Best case: a high-level software project with formal methods planned
from the start

Bottom-up:
Can be applied to all binary code
Loses nice behavior of high-level languages
Only suitable pathway towards verifying source-free mission-critical
code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Bottom-Up vs. Top-Down

Top-down:
Unfit for security retrofitting
Incompatible with low-level tasks
Best case: a high-level software project with formal methods planned
from the start

Bottom-up:
Can be applied to all binary code
Loses nice behavior of high-level languages
Only suitable pathway towards verifying source-free mission-critical
code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Bottom-Up vs. Top-Down

Top-down:
Unfit for security retrofitting
Incompatible with low-level tasks
Best case: a high-level software project with formal methods planned
from the start

Bottom-up:
Can be applied to all binary code

Loses nice behavior of high-level languages
Only suitable pathway towards verifying source-free mission-critical
code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Bottom-Up vs. Top-Down

Top-down:
Unfit for security retrofitting
Incompatible with low-level tasks
Best case: a high-level software project with formal methods planned
from the start

Bottom-up:
Can be applied to all binary code
Loses nice behavior of high-level languages

Only suitable pathway towards verifying source-free mission-critical
code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Bottom-Up vs. Top-Down

Top-down:
Unfit for security retrofitting
Incompatible with low-level tasks
Best case: a high-level software project with formal methods planned
from the start

Bottom-up:
Can be applied to all binary code
Loses nice behavior of high-level languages
Only suitable pathway towards verifying source-free mission-critical
code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Trusted Computing Base

All formal approaches have a set of assumptions upon which all further
reasoning is built.

Picinæ’s assumptions:
Accuracy of user-provided correctness specifications - these are always
assumptions

Correctness of binary lifter - systematically tested against real
hardware [BAP - CAV 2011]
Correctness of proof checker and underlying logic - systematically
verified by hand and by formal approaches [MetaCoq - POPL 2018]

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024

https://users.ece.cmu.edu/~aavgerin/papers/bap-cav-11.pdf
https://popl18.sigplan.org/details/CoqPL-2018/1/Typed-Template-Coq


The Details

Trusted Computing Base

All formal approaches have a set of assumptions upon which all further
reasoning is built.

Picinæ’s assumptions:
Accuracy of user-provided correctness specifications - these are always
assumptions
Correctness of binary lifter - systematically tested against real
hardware [BAP - CAV 2011]

Correctness of proof checker and underlying logic - systematically
verified by hand and by formal approaches [MetaCoq - POPL 2018]

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024

https://users.ece.cmu.edu/~aavgerin/papers/bap-cav-11.pdf
https://popl18.sigplan.org/details/CoqPL-2018/1/Typed-Template-Coq


The Details

Trusted Computing Base

All formal approaches have a set of assumptions upon which all further
reasoning is built.

Picinæ’s assumptions:
Accuracy of user-provided correctness specifications - these are always
assumptions
Correctness of binary lifter - systematically tested against real
hardware [BAP - CAV 2011]
Correctness of proof checker and underlying logic - systematically
verified by hand and by formal approaches [MetaCoq - POPL 2018]

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024

https://users.ece.cmu.edu/~aavgerin/papers/bap-cav-11.pdf
https://popl18.sigplan.org/details/CoqPL-2018/1/Typed-Template-Coq


The Details

Example

Move R_T2 (BinOp OP_OR (Word 0 32) (Word 1 32))
Move R_T3 (BinOp OP_AND (Var R_T3) (Word 0 32))
If (BinOp OP_EQ (Var R_T0) (Var R_T3)) (Jmp (Word 32 32)) Nop
Move R_T1 (BinOp OP_PLUS (Var R_T1) (Word 1 32))
Move R_T0 (BinOp OP_MINUS (Var R_T0) (Var R_T2))
If (BinOp OP_EQ (Var R_T3) (Var R_T3)) (Jmp (Word 16 32)) Nop

Picinæ IL

ori    t2,zero,1
andi   t3,t3,0

add:
beq    t0,t3,20 <end>
addi   t1,t1,1
sub    t0,t0,t2
beq    t3,t3,10 <add>

end:

RISC-V Assembly

0x00106393000e7e13
  01c2886300130313
  407282b3ffce0ae3

RISC-V Binary

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



The Details

Example

Definition postcondition (s : store) (x y : N) :=
(* Tie register value to output of Coq binnat add function *)
s R_T1 = (D)(x (+) y).

Definition addloop_correctness_invs (_ : store) (p : addr)
(x y : N) (t:trace) := (* Proof of these invariants is ~40 LOC *)

match t with (Addr a, s) :: _ => match a with
(* Tie the contents of a CPU state to Coq variables x and y *)

| 0x8 => Some (s R_T0 = (D)x /\ s R_T1 = (D)y)
| 0x10 => Some (exists t0 t1,

(* Same as above *)
s R_T0 = (D)t0 /\ s R_T1 = (D)t1 /\
s R_T2 = (D)1 /\ s R_T3 = (D)0 /\
(* Invariant: the sum of R0 and R1 is always equal to

the sum of x and y *)
t0 (+) t1 = x (+) y)
(* When the program exits, this postcondition is satisfied *)

| 0x20 => Some (postcondition s x y)
| _ => None end

| _ => None
end.

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

The Point

We can write arbitrary proofs of correctness for binary code

This is now possible because of the advent of machine-readable
specification
Difficulties are stating specifications and translating arguments

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

The Point

We can write arbitrary proofs of correctness for binary code
This is now possible because of the advent of machine-readable
specification

Difficulties are stating specifications and translating arguments

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

The Point

We can write arbitrary proofs of correctness for binary code
This is now possible because of the advent of machine-readable
specification
Difficulties are stating specifications and translating arguments

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

There’s More

Forget correctness, Coq is expressive enough to represent arbitrary
properties about these lifted structures:

(* Assume we have some function that maps instructions to execution times *)
Axiom time_of_addr (s : state) (a : addr) : N.

(* We can define a function that encodes the execution time of a trace,
a.k.a. a list of program states created as a program executes *)

Definition cycle_count_of_trace (t : trace) : N :=
List.fold_left N.add (List.map

(fun '(e, s) => match e with
| Addr a => time_of_addr s a
| Raise n => max32
end) t) 0.

(* Worst-case number of cycles addloop can take to execute on the
NEORV32 RISC-V processor. `x` is our first operand! *)

Definition addloop_timing_postcondition (t : trace) (x : N) :=
cycle_count_of_trace t = 9 + (ML - 1) + x * (12 + (ML - 1)).

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Timing Approaches

Sometimes we want to know how long code takes to run.
Big-O approach satisfactory for:

Algorithm design

High-level optimization

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Timing Approaches

Sometimes we want to know how long code takes to run.
Big-O approach satisfactory for:

Algorithm design
High-level optimization

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Timing Approaches

Sometimes we want to know how long code takes to run.
Big-O approach satisfactory for:

Algorithm design
High-level optimization

Some tasks require a more concrete approach:
Constant-time cryptography

Real-time-constrained code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Timing Approaches

Sometimes we want to know how long code takes to run.
Big-O approach satisfactory for:

Algorithm design
High-level optimization

Some tasks require a more concrete approach:
Constant-time cryptography
Real-time-constrained code

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Summer Work

As of a few weeks ago, Picinæ can encode concrete timing properties!

Goals:
Show that RTOS code does not violate timing constraints after a
program transformation (e.g. CFI injection)

Formally prove various crypto ciphers don’t contain ”timing leaks”
Automate writing invariants (trivial for downto-style loops) and
timing proofs (tougher but promising)
Introduce system to people in different security fields - let’s work
together and formalize some cool binary analysis techniques!

A very cool, unforseen result of this research: timing proofs utilize all of
the same machinery as correctness proofs, but are vastly simpler to write.
Our research team will likely onboard new Picinæ users starting
with timing proofs first.

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Summer Work

As of a few weeks ago, Picinæ can encode concrete timing properties!

Goals:
Show that RTOS code does not violate timing constraints after a
program transformation (e.g. CFI injection)
Formally prove various crypto ciphers don’t contain ”timing leaks”

Automate writing invariants (trivial for downto-style loops) and
timing proofs (tougher but promising)
Introduce system to people in different security fields - let’s work
together and formalize some cool binary analysis techniques!

A very cool, unforseen result of this research: timing proofs utilize all of
the same machinery as correctness proofs, but are vastly simpler to write.
Our research team will likely onboard new Picinæ users starting
with timing proofs first.

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Summer Work

As of a few weeks ago, Picinæ can encode concrete timing properties!

Goals:
Show that RTOS code does not violate timing constraints after a
program transformation (e.g. CFI injection)
Formally prove various crypto ciphers don’t contain ”timing leaks”
Automate writing invariants (trivial for downto-style loops) and
timing proofs (tougher but promising)

Introduce system to people in different security fields - let’s work
together and formalize some cool binary analysis techniques!

A very cool, unforseen result of this research: timing proofs utilize all of
the same machinery as correctness proofs, but are vastly simpler to write.
Our research team will likely onboard new Picinæ users starting
with timing proofs first.

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Summer Work

As of a few weeks ago, Picinæ can encode concrete timing properties!

Goals:
Show that RTOS code does not violate timing constraints after a
program transformation (e.g. CFI injection)
Formally prove various crypto ciphers don’t contain ”timing leaks”
Automate writing invariants (trivial for downto-style loops) and
timing proofs (tougher but promising)
Introduce system to people in different security fields - let’s work
together and formalize some cool binary analysis techniques!

A very cool, unforseen result of this research: timing proofs utilize all of
the same machinery as correctness proofs, but are vastly simpler to write.
Our research team will likely onboard new Picinæ users starting
with timing proofs first.

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024



So What?

Summer Work

As of a few weeks ago, Picinæ can encode concrete timing properties!

Goals:
Show that RTOS code does not violate timing constraints after a
program transformation (e.g. CFI injection)
Formally prove various crypto ciphers don’t contain ”timing leaks”
Automate writing invariants (trivial for downto-style loops) and
timing proofs (tougher but promising)
Introduce system to people in different security fields - let’s work
together and formalize some cool binary analysis techniques!

A very cool, unforseen result of this research: timing proofs utilize all of
the same machinery as correctness proofs, but are vastly simpler to write.
Our research team will likely onboard new Picinæ users starting
with timing proofs first.

Charles Averill (UTD) The Good, The Bad, and The Binary August 2024


	What's the Deal?
	The Details
	So What?

