
30 Cycles or It’s Free
Formal Timing and Correctness of Binary Code

Charles Averill

UTD Computer Security Group
The University of Texas at Dallas

Dartmouth College

September 2024

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Background

I work with Prof. Kevin Hamlen and Prof. Christophe Hauser

We study Formal Verification, the process of writing mathematical
proofs about code rather than relying on unit testing
We also specialize in binary code - this has a lot of cool implications
(What happens if memory buffers overlap? How to handle modular
arithmetic? What is a function call?)
We often write proofs showing that a function is correct - its outputs
meet some specification given the inputs - but our verification system
is flexible enough to prove other properties

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://personal.utdallas.edu/~hamlen/teaching.html
https://faculty-directory.dartmouth.edu/christophe-hauser

Background

I work with Prof. Kevin Hamlen and Prof. Christophe Hauser
We study Formal Verification, the process of writing mathematical
proofs about code rather than relying on unit testing

We also specialize in binary code - this has a lot of cool implications
(What happens if memory buffers overlap? How to handle modular
arithmetic? What is a function call?)
We often write proofs showing that a function is correct - its outputs
meet some specification given the inputs - but our verification system
is flexible enough to prove other properties

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://personal.utdallas.edu/~hamlen/teaching.html
https://faculty-directory.dartmouth.edu/christophe-hauser

Background

I work with Prof. Kevin Hamlen and Prof. Christophe Hauser
We study Formal Verification, the process of writing mathematical
proofs about code rather than relying on unit testing
We also specialize in binary code - this has a lot of cool implications
(What happens if memory buffers overlap? How to handle modular
arithmetic? What is a function call?)

We often write proofs showing that a function is correct - its outputs
meet some specification given the inputs - but our verification system
is flexible enough to prove other properties

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://personal.utdallas.edu/~hamlen/teaching.html
https://faculty-directory.dartmouth.edu/christophe-hauser

Background

I work with Prof. Kevin Hamlen and Prof. Christophe Hauser
We study Formal Verification, the process of writing mathematical
proofs about code rather than relying on unit testing
We also specialize in binary code - this has a lot of cool implications
(What happens if memory buffers overlap? How to handle modular
arithmetic? What is a function call?)
We often write proofs showing that a function is correct - its outputs
meet some specification given the inputs - but our verification system
is flexible enough to prove other properties

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://personal.utdallas.edu/~hamlen/teaching.html
https://faculty-directory.dartmouth.edu/christophe-hauser

The Problem

Nobody knows how long it takes code to run

(well, kind of...)
Refinement: nobody can write a formal proof that some code takes n
clock cycles to execute
That means that nuclear reactor controllers, autopilot software,
elevators, and other things controlled by real-time code rely on
hearsay and conjecture to know that they meet their essential timing
constraints
These proofs would be useful in a few key critical areas:

Kernel-level real-time code such as the FreeRTOS kernel
User-level real-time code such as ArduPilot
Constant-time cryptography

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Problem

Nobody knows how long it takes code to run (well, kind of...)

Refinement: nobody can write a formal proof that some code takes n
clock cycles to execute
That means that nuclear reactor controllers, autopilot software,
elevators, and other things controlled by real-time code rely on
hearsay and conjecture to know that they meet their essential timing
constraints
These proofs would be useful in a few key critical areas:

Kernel-level real-time code such as the FreeRTOS kernel
User-level real-time code such as ArduPilot
Constant-time cryptography

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Problem

Nobody knows how long it takes code to run (well, kind of...)
Refinement: nobody can write a formal proof that some code takes n
clock cycles to execute

That means that nuclear reactor controllers, autopilot software,
elevators, and other things controlled by real-time code rely on
hearsay and conjecture to know that they meet their essential timing
constraints
These proofs would be useful in a few key critical areas:

Kernel-level real-time code such as the FreeRTOS kernel
User-level real-time code such as ArduPilot
Constant-time cryptography

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Problem

Nobody knows how long it takes code to run (well, kind of...)
Refinement: nobody can write a formal proof that some code takes n
clock cycles to execute
That means that nuclear reactor controllers, autopilot software,
elevators, and other things controlled by real-time code rely on
hearsay and conjecture to know that they meet their essential timing
constraints

These proofs would be useful in a few key critical areas:
Kernel-level real-time code such as the FreeRTOS kernel
User-level real-time code such as ArduPilot
Constant-time cryptography

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Problem

Nobody knows how long it takes code to run (well, kind of...)
Refinement: nobody can write a formal proof that some code takes n
clock cycles to execute
That means that nuclear reactor controllers, autopilot software,
elevators, and other things controlled by real-time code rely on
hearsay and conjecture to know that they meet their essential timing
constraints
These proofs would be useful in a few key critical areas:

Kernel-level real-time code such as the FreeRTOS kernel
User-level real-time code such as ArduPilot
Constant-time cryptography

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Solution

Build formal models of software and CPUs
Formally state your timing constraints w.r.t. code inputs
Write a proof that your software meets your timing constraint
Employ a machine to check that your proof is correct

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Challenges

Build formal models of software and CPUs
Which models do you formalize? Languages? Interpreters/Compilers?
CPU semantics? Hardware?
Some languages/compilers/CPUs have no formal specification, many
more have no machine-readable formal specification
The proposition that the model matches the implementation is usually
an assumption and unproven

Formally state your timing constraints w.r.t. code inputs
Write a proof that your software meets your timing constraint
Employ a machine to check that your proof is correct

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Challenges

Build formal models of software and CPUs
Formally state your timing constraints w.r.t. code inputs

Timing constraints can be difficult to divine if code contains loops with
complex termination conditions
Constraints should reference inputs/memory at beginning of function
(rather than the memory state at the end) and it’s difficult to show a
path exists between the input and output state

Write a proof that your software meets your timing constraint
Employ a machine to check that your proof is correct

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Challenges

Build formal models of software and CPUs
Formally state your timing constraints w.r.t. code inputs
Write a proof that your software meets your timing constraint

Writing formal proofs requires learning a proof language
Proofs about code must handle deep concepts such as decidability and
termination
Reasoning about loops requires non-trivial insight learned by experience

Employ a machine to check that your proof is correct

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Challenges

Build formal models of software and CPUs
Formally state your timing constraints w.r.t. code inputs
Write a proof that your software meets your timing constraint
Employ a machine to check that your proof is correct

Can we trust the machine to properly check?

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

The Challenges

Build formal models of software and CPUs
Formally state your timing constraints w.r.t. code inputs
Write a proof that your software meets your timing constraint
Employ a machine to check that your proof is correct

High-Level, ISA-Agnostic IL

Disassemble + Lift

Native Machine Code

Proofs of Correctness

Coq

Extract + Compile

High-Level
Source Code

Proofs of
Correctness

Coq

Proofs of
Correctness

Native
Machine Code

Top-Down Formal Methods Bottom-Up Formal Methods

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Models of CPUs

Picinæ is a verification framework designed here at UTD, used for
writing proofs about binary code

Supports most major ISAs – x86, Amd64, Arm, RISC-V – and can be
extended to more
Built around the concept of symbolic interpretation, or stepping
through the code without knowing the inputs, and keeping track of
how the state changes
Is a software verification system - implements ISA but not hardware
features like caching

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Models of CPUs

Picinæ is a verification framework designed here at UTD, used for
writing proofs about binary code
Supports most major ISAs – x86, Amd64, Arm, RISC-V – and can be
extended to more

Built around the concept of symbolic interpretation, or stepping
through the code without knowing the inputs, and keeping track of
how the state changes
Is a software verification system - implements ISA but not hardware
features like caching

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Models of CPUs

Picinæ is a verification framework designed here at UTD, used for
writing proofs about binary code
Supports most major ISAs – x86, Amd64, Arm, RISC-V – and can be
extended to more
Built around the concept of symbolic interpretation, or stepping
through the code without knowing the inputs, and keeping track of
how the state changes

Is a software verification system - implements ISA but not hardware
features like caching

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Models of CPUs

Picinæ is a verification framework designed here at UTD, used for
writing proofs about binary code
Supports most major ISAs – x86, Amd64, Arm, RISC-V – and can be
extended to more
Built around the concept of symbolic interpretation, or stepping
through the code without knowing the inputs, and keeping track of
how the state changes
Is a software verification system - implements ISA but not hardware
features like caching

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Timing Constraints

What does it mean to constrain the execution time of a function?

We want some arithmetic expression that is parametrized by the
inputs to the function

What kind of units do we want to use?
Clock cycles. Seconds would be nice, but cycles are fundamental unit
of time in the CPU, correlation between cycles and seconds varies over
time due to things like heat and charge (we don’t want to verify
physics stuff, too hard)
“CPU Instruction” to “Clock Cycles” relation is often known and
documented in the CPU manual

Given our time constraint expression, how do we relate it to a
program in a formal manner?

Program traces - a history of the CPU, stored as a list of states,
annotated by the address of the instruction that created that state

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Timing Constraints

What does it mean to constrain the execution time of a function?
We want some arithmetic expression that is parametrized by the
inputs to the function

What kind of units do we want to use?
Clock cycles. Seconds would be nice, but cycles are fundamental unit
of time in the CPU, correlation between cycles and seconds varies over
time due to things like heat and charge (we don’t want to verify
physics stuff, too hard)
“CPU Instruction” to “Clock Cycles” relation is often known and
documented in the CPU manual

Given our time constraint expression, how do we relate it to a
program in a formal manner?

Program traces - a history of the CPU, stored as a list of states,
annotated by the address of the instruction that created that state

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Timing Constraints

What does it mean to constrain the execution time of a function?
We want some arithmetic expression that is parametrized by the
inputs to the function

What kind of units do we want to use?

Clock cycles. Seconds would be nice, but cycles are fundamental unit
of time in the CPU, correlation between cycles and seconds varies over
time due to things like heat and charge (we don’t want to verify
physics stuff, too hard)
“CPU Instruction” to “Clock Cycles” relation is often known and
documented in the CPU manual

Given our time constraint expression, how do we relate it to a
program in a formal manner?

Program traces - a history of the CPU, stored as a list of states,
annotated by the address of the instruction that created that state

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Timing Constraints

What does it mean to constrain the execution time of a function?
We want some arithmetic expression that is parametrized by the
inputs to the function

What kind of units do we want to use?
Clock cycles. Seconds would be nice, but cycles are fundamental unit
of time in the CPU, correlation between cycles and seconds varies over
time due to things like heat and charge (we don’t want to verify
physics stuff, too hard)
“CPU Instruction” to “Clock Cycles” relation is often known and
documented in the CPU manual

Given our time constraint expression, how do we relate it to a
program in a formal manner?

Program traces - a history of the CPU, stored as a list of states,
annotated by the address of the instruction that created that state

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Timing Constraints

What does it mean to constrain the execution time of a function?
We want some arithmetic expression that is parametrized by the
inputs to the function

What kind of units do we want to use?
Clock cycles. Seconds would be nice, but cycles are fundamental unit
of time in the CPU, correlation between cycles and seconds varies over
time due to things like heat and charge (we don’t want to verify
physics stuff, too hard)
“CPU Instruction” to “Clock Cycles” relation is often known and
documented in the CPU manual

Given our time constraint expression, how do we relate it to a
program in a formal manner?

Program traces - a history of the CPU, stored as a list of states,
annotated by the address of the instruction that created that state

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formal Timing Constraints

What does it mean to constrain the execution time of a function?
We want some arithmetic expression that is parametrized by the
inputs to the function

What kind of units do we want to use?
Clock cycles. Seconds would be nice, but cycles are fundamental unit
of time in the CPU, correlation between cycles and seconds varies over
time due to things like heat and charge (we don’t want to verify
physics stuff, too hard)
“CPU Instruction” to “Clock Cycles” relation is often known and
documented in the CPU manual

Given our time constraint expression, how do we relate it to a
program in a formal manner?

Program traces - a history of the CPU, stored as a list of states,
annotated by the address of the instruction that created that state

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Program Trace Example

add t5, t0, t1

ori s0, a0, a1

beq t5, s0, Label

state' = state [R_T5 := R_T0 + R_T1]

state

state'' = state' [R_S0 := R_A0 + R_A1]

state''' = state'' [R_T5 = R_S0]
or

state''' = state'' [R_T0 + R_T1 = R_A0 + RA_1]

total cycles = 3

total cycles = 3 + 4

total cycles = 3 + 4 + (5 + (ML - 1))

state''' = state'' [R_T5 != R_S0]
or

state''' = state'' [R_T0 + R_T1 != R_A0 + RA_1]

total cycles = 0

total cycles = 3 + 4 + 3

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

CPU Timing Documentation

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

CPU Timing Documentation

Definition neorv32_cycles_upper_bound (ML : N) (s : store) (instr : N) :=
let reg_or_max (reg : N) : N := ... in
(* addi slti sltiu xori ori andi add sub slt sltu xor ... : 2 *)
let op := riscv_opcode instr in
if op =? 51 then (* 0110011 : R-type *)

let '(funct7, rs2, rs1, funct3, rd, opcode) := decompose_Rtype instr in
if contains [0;2;3;4;6;7] funct3 then

(* add sub xor or and slt sltu *)
Some 2%N

else
(* sll srl sra : [3 + shamt/4 + shamt%4]*)
(* shamt := rs2 *)
(* Constant shift times with FAST_SHIFT_EN or TINY_SHIFT_EN *)
Some (3 + (reg_or_max rs2 / 4) + ((reg_or_max rs2) mod 4))%N

else if op =? 3 then (* 0000011 : I-type *)
let '(imm, rs1, funct3, rd, opcode) := decompose_Itype instr in
(* lb lh lw lbu lhu : [5 + (ML - 2)] *)
Some (5 + (ML - 2))%N

...

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formalization of Program Execution Time

We can write a function that computes the total execution time for a
program trace:

Definition trace : Type := list (addr * store).

Definition cycle_count_of_trace (t : trace) : N :=
List.fold_left N.add (List.map (fun '(a, s) => time_of_addr s a) t) 0.

But we have a problem! You can’t actually run code in Picinæ, so how do
we actually use this function?

Answer: we write a proof saying that for all possible inputs to function,
the output is some XYZ number of cycles!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formalization of Program Execution Time

We can write a function that computes the total execution time for a
program trace:

Definition trace : Type := list (addr * store).

Definition cycle_count_of_trace (t : trace) : N :=
List.fold_left N.add (List.map (fun '(a, s) => time_of_addr s a) t) 0.

But we have a problem! You can’t actually run code in Picinæ, so how do
we actually use this function?

Answer: we write a proof saying that for all possible inputs to function,
the output is some XYZ number of cycles!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Formalization of Program Execution Time

We can write a function that computes the total execution time for a
program trace:

Definition trace : Type := list (addr * store).

Definition cycle_count_of_trace (t : trace) : N :=
List.fold_left N.add (List.map (fun '(a, s) => time_of_addr s a) t) 0.

But we have a problem! You can’t actually run code in Picinæ, so how do
we actually use this function?

Answer: we write a proof saying that for all possible inputs to function,
the output is some XYZ number of cycles!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Example: addloop

Move R_T2 (BinOp OP_OR (Word 0 32) (Word 1 32))
Move R_T3 (BinOp OP_AND (Var R_T3) (Word 0 32))
If (BinOp OP_EQ (Var R_T0) (Var R_T3)) (Jmp (Word 32 32)) Nop
Move R_T1 (BinOp OP_PLUS (Var R_T1) (Word 1 32))
Move R_T0 (BinOp OP_MINUS (Var R_T0) (Var R_T2))
If (BinOp OP_EQ (Var R_T3) (Var R_T3)) (Jmp (Word 16 32)) Nop

Picinæ IL

ori t2,zero,1
andi t3,t3,0

add:
beq t0,t3,20 <end>
addi t1,t1,1
sub t0,t0,t2
beq t3,t3,10 <add>

end:

RISC-V Assembly

0x00106393000e7e13
 01c2886300130313
 407282b3ffce0ae3

RISC-V Binary

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Example: addloop

(* -> function inputs <- *)
Definition addloop_timing_invs (_ : store) (p : addr) (x y : N) (t:trace) :=
match t with (Addr a, s) :: t' => match a with

| 0xc => Some (s R_T0 = x /\ s R_T2 = 1 /\
cycle_count_of_trace t = 2 + 2)

| 0x10 => Some (exists t0, s R_T0 = t0 /\ s R_T2 = 1 /\ s R_T3 = 0
/\ t0 <= x /\

cycle_count_of_trace t' = 4 + (x - t0) * (12 + (ML - 1)))
(* 2 + 2 + (x - t0) * (3 + 2 + 2 + (5 + (ML - 1)) *)

| 0x20 => Some (
(* This one is our timing constraint! *)
(* ML is memory latency - the time in cycles to do a mem read *)
(* time of addloop(x, y) = 9 + time_mem + x * (12 + time_mem) *)
(* = [setup time] + x * [loop time] *)
cycle_count_of_trace t' = 9 + (ML - 1) + x * (12 + (ML - 1)))

(* 2 + 2 + (5 + (ML - 1)) + x * (3 + 2 + 2 + (5 + (ML - 1))) *)
| _ => None end

| _ => None
end.

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

A Real Example

A toy example will not get me published somewhere nice

Looking back at motivation: can we find some real-world, real-time
code to formally time?
Initially looked at ArduPilot, open-source autopilot software
Why bother messing around in userspace? Let’s time something from
FreeRTOS so that everybody gets some benefit
FreeRTOS is a market-leading embedded system RTOS supporting 40+
processor architectures with a small memory footprint, fast execution
times, and cutting-edge RTOS features and libraries including Symmetric
Multiprocessing (SMP), a thread-safe TCP stack with IPv6 support, and
seamless integration with cloud services. Its open-source and actively
supported and maintained.

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://freertos.org/

A Real Example

A toy example will not get me published somewhere nice
Looking back at motivation: can we find some real-world, real-time
code to formally time?

Initially looked at ArduPilot, open-source autopilot software
Why bother messing around in userspace? Let’s time something from
FreeRTOS so that everybody gets some benefit
FreeRTOS is a market-leading embedded system RTOS supporting 40+
processor architectures with a small memory footprint, fast execution
times, and cutting-edge RTOS features and libraries including Symmetric
Multiprocessing (SMP), a thread-safe TCP stack with IPv6 support, and
seamless integration with cloud services. Its open-source and actively
supported and maintained.

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://freertos.org/

A Real Example

A toy example will not get me published somewhere nice
Looking back at motivation: can we find some real-world, real-time
code to formally time?
Initially looked at ArduPilot, open-source autopilot software

Why bother messing around in userspace? Let’s time something from
FreeRTOS so that everybody gets some benefit
FreeRTOS is a market-leading embedded system RTOS supporting 40+
processor architectures with a small memory footprint, fast execution
times, and cutting-edge RTOS features and libraries including Symmetric
Multiprocessing (SMP), a thread-safe TCP stack with IPv6 support, and
seamless integration with cloud services. Its open-source and actively
supported and maintained.

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://freertos.org/

A Real Example

A toy example will not get me published somewhere nice
Looking back at motivation: can we find some real-world, real-time
code to formally time?
Initially looked at ArduPilot, open-source autopilot software
Why bother messing around in userspace? Let’s time something from
FreeRTOS so that everybody gets some benefit

FreeRTOS is a market-leading embedded system RTOS supporting 40+
processor architectures with a small memory footprint, fast execution
times, and cutting-edge RTOS features and libraries including Symmetric
Multiprocessing (SMP), a thread-safe TCP stack with IPv6 support, and
seamless integration with cloud services. Its open-source and actively
supported and maintained.

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://freertos.org/

A Real Example

A toy example will not get me published somewhere nice
Looking back at motivation: can we find some real-world, real-time
code to formally time?
Initially looked at ArduPilot, open-source autopilot software
Why bother messing around in userspace? Let’s time something from
FreeRTOS so that everybody gets some benefit
FreeRTOS is a market-leading embedded system RTOS supporting 40+
processor architectures with a small memory footprint, fast execution
times, and cutting-edge RTOS features and libraries including Symmetric
Multiprocessing (SMP), a thread-safe TCP stack with IPv6 support, and
seamless integration with cloud services. Its open-source and actively
supported and maintained.

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

https://freertos.org/

vTaskSwitchContext

Prepares to switch CPU context between available ready tasks

Chooses next task based on known priority values
Very critical - if timing leak here, planes crash, reactors melt down,
etc.
Constrained, yet interesting control flow and memory problems to
solve
TLDR; a real-world example with real security implications that
provides a compelling, yet doable case study for the practicality/utility
of Picinæ timing proofs

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

vTaskSwitchContext

Prepares to switch CPU context between available ready tasks
Chooses next task based on known priority values

Very critical - if timing leak here, planes crash, reactors melt down,
etc.
Constrained, yet interesting control flow and memory problems to
solve
TLDR; a real-world example with real security implications that
provides a compelling, yet doable case study for the practicality/utility
of Picinæ timing proofs

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

vTaskSwitchContext

Prepares to switch CPU context between available ready tasks
Chooses next task based on known priority values
Very critical - if timing leak here, planes crash, reactors melt down,
etc.

Constrained, yet interesting control flow and memory problems to
solve
TLDR; a real-world example with real security implications that
provides a compelling, yet doable case study for the practicality/utility
of Picinæ timing proofs

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

vTaskSwitchContext

Prepares to switch CPU context between available ready tasks
Chooses next task based on known priority values
Very critical - if timing leak here, planes crash, reactors melt down,
etc.
Constrained, yet interesting control flow and memory problems to
solve

TLDR; a real-world example with real security implications that
provides a compelling, yet doable case study for the practicality/utility
of Picinæ timing proofs

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

vTaskSwitchContext

Prepares to switch CPU context between available ready tasks
Chooses next task based on known priority values
Very critical - if timing leak here, planes crash, reactors melt down,
etc.
Constrained, yet interesting control flow and memory problems to
solve
TLDR; a real-world example with real security implications that
provides a compelling, yet doable case study for the practicality/utility
of Picinæ timing proofs

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

vTaskSwitchContext

Definition time_of_vTaskSwitchContext (t : trace) (mem : addr -> N) : Prop :=
(* is the scheduler suspended? *)
if (uxSchedulerSuspended gp mem) =? 0 then

cycle_count_of_trace t = (* total number of cycles equals... *)
25 + 3 * time_branch + 17 * time_mem +

(* This branch condition isn't well-documented,
need to dig into source *)

(if
(mem[4 + mem[gp - 920 + (31 - clz (uxTopReadyPriority gp mem) 32) * 20]])

=? ((gp - 916) + (31 - clz (uxTopReadyPriority gp mem) 32) * 20)
then

22 + (clz (uxTopReadyPriority gp mem) 32) + 5 * time_mem
else

19 + time_branch + (clz (uxTopReadyPriority gp mem) 32) + 3 * time_mem
(* time_branch = 5 + (memory latency - 1)

of cycles for a successful/taken branch *)
(* time_mem = 5 + (memory latency - 2),

of cycles for a memory retreival *))
else

cycle_count_of_trace t = 5 + time_branch + 2 * time_mem.

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Another Example: Timing Attacks

Some cryptographic ciphers can be reversed if an attacker has
knowledge of how long the cipher takes to run

This problem has spawned the field of Constant-Time Cryptography,
where we write ciphers that do not have timing differences depending
on the value of the input
Some future/ongoing work for us: verify that an encryption cipher is
algorithmically invulnerable to timing attacks
How to show invulnerability? Code is invulnerable to timing attacks if
no sensitive data appears in your timing expression!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Another Example: Timing Attacks

Some cryptographic ciphers can be reversed if an attacker has
knowledge of how long the cipher takes to run
This problem has spawned the field of Constant-Time Cryptography,
where we write ciphers that do not have timing differences depending
on the value of the input

Some future/ongoing work for us: verify that an encryption cipher is
algorithmically invulnerable to timing attacks
How to show invulnerability? Code is invulnerable to timing attacks if
no sensitive data appears in your timing expression!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Another Example: Timing Attacks

Some cryptographic ciphers can be reversed if an attacker has
knowledge of how long the cipher takes to run
This problem has spawned the field of Constant-Time Cryptography,
where we write ciphers that do not have timing differences depending
on the value of the input
Some future/ongoing work for us: verify that an encryption cipher is
algorithmically invulnerable to timing attacks

How to show invulnerability? Code is invulnerable to timing attacks if
no sensitive data appears in your timing expression!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Another Example: Timing Attacks

Some cryptographic ciphers can be reversed if an attacker has
knowledge of how long the cipher takes to run
This problem has spawned the field of Constant-Time Cryptography,
where we write ciphers that do not have timing differences depending
on the value of the input
Some future/ongoing work for us: verify that an encryption cipher is
algorithmically invulnerable to timing attacks
How to show invulnerability?

Code is invulnerable to timing attacks if
no sensitive data appears in your timing expression!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

Another Example: Timing Attacks

Some cryptographic ciphers can be reversed if an attacker has
knowledge of how long the cipher takes to run
This problem has spawned the field of Constant-Time Cryptography,
where we write ciphers that do not have timing differences depending
on the value of the input
Some future/ongoing work for us: verify that an encryption cipher is
algorithmically invulnerable to timing attacks
How to show invulnerability? Code is invulnerable to timing attacks if
no sensitive data appears in your timing expression!

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

TLDR

We developed a way to write proofs about the time machine code
takes to run

Real-time code needs these guarantees to ensure the physical safety
of real-time critical systems
These guarantees can show the timing safety of cryptographic ciphers
This approach shows that trace properties are an elegant way to add
arbitrary capabilities to our proof system

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

TLDR

We developed a way to write proofs about the time machine code
takes to run
Real-time code needs these guarantees to ensure the physical safety
of real-time critical systems

These guarantees can show the timing safety of cryptographic ciphers
This approach shows that trace properties are an elegant way to add
arbitrary capabilities to our proof system

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

TLDR

We developed a way to write proofs about the time machine code
takes to run
Real-time code needs these guarantees to ensure the physical safety
of real-time critical systems
These guarantees can show the timing safety of cryptographic ciphers

This approach shows that trace properties are an elegant way to add
arbitrary capabilities to our proof system

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

TLDR

We developed a way to write proofs about the time machine code
takes to run
Real-time code needs these guarantees to ensure the physical safety
of real-time critical systems
These guarantees can show the timing safety of cryptographic ciphers
This approach shows that trace properties are an elegant way to add
arbitrary capabilities to our proof system

Charles Averill (UTD) 30 Cycles or It’s Free September 2024

