O P N T R W N =

LS TS B S S S N e S R O S T R S O R T I T BV S T R S R S C R C R O C R C R OO C R R OO T T O
G b W N = © 0V 0 NN kR W N R, OO 0N R WY H O 0 N R WY =2 DS Y YR WY = O

The Proof Must Go On

Formal Methods in the Theater of Secure Software Development of the Future

Charles Averill
charles@utdallas.edu
University of Texas at Dallas
Dallas, Texas, USA

Cyber Attacks and Costs (2016-2060)

I Recorded Cyber Attacks

—e— Estimated Cost
160

140

120

o

100

=3

80

=3

6

Recorded Cyber Attacks (in millions)
3

4

S

2

o

Yea

"
Sources: Statista, CISSM, FBI, IMF

o || m

2020 2030 2040

~N w
Estimated Cost of Cybercrime ($ trillion)

-

=)

2050 2060

Figure 1. Recorded cyberattacks and their cumulative costs over the first half of the 21t century.

Abstract

Formal methods does not arrive with fanfare. It spreads qui-
etly, not as a revolution, but as a patch: reviewed, merged,
and dismissed. In the coming decades, the dream of top-
down correctness collapses under the weight of real-world
software, replaced by a slower, messier reality as FM be-
comes infrastructure. Verified C libraries thread their way
into the systems that run the internet. Model checkers embed
themselves in CI pipelines. Modern type systems reach the
masses. But Al and IO remain stubbornly unverifiable and
insecure, forcing industry to work towards a deeper form

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SPLASH °25, Woodstock, NY

© 2025 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

of trust. Meanwhile, a generation of developers learns to
write specifications not as a niche academic exercise, but as a
matter of professional survival. This paper tells the story of
how formal verification goes from lofty fantasy to invisible
standard — and how, without anyone noticing, the proof
goes on.

CCS Concepts: « Do Not Use This Code — Generate the
Correct Terms for Your Paper; Generate the Correct Terms
for Your Paper; Generate the Correct Terms for Your Paper;
Generate the Correct Terms for Your Paper.

Keywords: Do, Not, Us, This, Code, Put, the, Correct, Terms,
for, Your, Paper

ACM Reference Format:

Charles Averill. 2018. The Proof Must Go On: Formal Methods
in the Theater of Secure Software Development of the Future. In
Proceedings of Make sure to enter the correct conference title from
your rights confirmation email (SPLASH ’25). ACM, New York, NY,
USA, 3 pages. https:/doi.org/XXXXXXX.XXXXXXX

56
57

59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

https://orcid.org/0000-0001-6614-1808
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

SPLASH ’25, June 03-05, 2018, Woodstock, NY

Prologue

Formal methods (FM) remain an overlooked aspect of soft-
ware development for most practitioners. The typical devel-
oper’s primary objective is speed — finishing current tasks
quickly to address the backlog of features and bugs that has
accumulated over months. In this race against time, verifica-
tion becomes a luxury few can afford.

Consequently, formal methods have become a privilege
exclusive to aerospace companies, defense contractors, and
elite infrastructure teams within tech giants — entities that
can invest in correctness by construction. This creates a
security inequality: the most critical systems benefit from
rigorous verification, while software used by schools, hos-
pitals, and local governments relies on hope, patches, and
best-effort testing. The same mathematical principles that
ensure the safety of aviation and banking systems remain
inaccessible to most developers.

After a century of advancement, only well-resourced or-
ganizations can leverage formal methods to protect their
infrastructure and users. This disparity continues to grow,
with increasingly severe consequences for those left behind.

Today’s formal methods encompass a spectrum of guar-
antees. At one end lie simple proofs of invariants, types,
bounds, and memory safety. At the other, we find machine-
checked mathematical arguments that programs conform to
formal specifications. Between these poles exists a diverse
toolkit: SAT solvers, symbolic execution engines, abstract
interpreters, and refinement type systems — all attempting
to answer the fundamental question: "Does this program do
what we believe it does, and only that?"

Many FM initiatives have pursued a top-down strategy:
developing new languages, compilers, and operating sys-
tems verified from first principles. This "top-down formal
methods" approach aims for theoretical perfection, building
upward from pure foundations. However, real-world systems
resist such clean-slate approaches. Production software is
inevitably complex, legacy-bound, and interconnected. De-
spite their technical elegance, purely top-down efforts rarely
reach deployment.

In our modern digital landscape, software orchestrates
everything from embedded devices to global infrastructure.
Behind the scenes, correctness, security, and safety form the
invisible foundation ensuring these systems function reli-
ably. Formal methods, once primarily academic, increasingly
provide these critical properties.

The future of formal methods lies not in revolutionary
replacements but in methodical, incremental transformation.
This essay traces FM’s trajectory from top-down idealism
to deeply integrated, production-level infrastructure — a
backstage revolution that continues even when unnoticed
by most observers.

Averill

Act I: The Decline of Top-Down Verification

Top-down formal methods begin to fade from prominence.
Though once championed by researchers as the cleanest
path to correctness, this approach falters under real-world
complexity. Efforts to verify entire systems from scratch
— operating systems, browsers, or compilers — prove too
expensive, fragile, and disconnected from the chaotic envi-
ronments they aim to secure.

In its place, modular verification thrives. Verified compo-
nents — allocators, parsers, encoders, protocol handlers —
circulate widely and integrate seamlessly into existing code-
bases. These components use assembly, C, and Rust — not
because verification demands it, but because historical mo-
mentum dictates it. These Modular Verified Components
(MVCs) become formal methods’ first mainstream offering.

By the late 30s, the first formally verified C standard library
enters production systems, beginning a deliberate migration
through the open-source ecosystem. Linux adopts portions
of it, followed by embedded firmware. Billions of devices
begin to rely on formally verified routines for memory man-
agement, string processing, and concurrency — without their
developers needing to understand the underlying proofs.

Throughout this transformation, researchers focus on ver-
ified boundaries — the interfaces defining trust relationships.
More libraries arrive with formal contracts. While most com-
pilers remain unverified, new tools emerge to bridge the
gap: symbolic execution engines, model checkers, and static
analyzers built on formal methods principles, integrated di-
rectly into continuous integration (CI) pipelines. Binary-level
analysis becomes standard practice due to its utility and au-
tomation.

Meanwhile, programming languages evolve to support
verification. High-level languages adopt features like affine
types, refinement types, and purity annotations. However,
the vision of fully verified high-level programs remains elu-
sive due to real-world complexities.

Nevertheless, verification tools become increasingly acces-
sible. Verified components proliferate, with public reposito-
ries of proven algorithms replacing ad-hoc implementations.
Open-source contributions begin to include not just tests but
machine-checkable properties.

Formal methods remain expensive — the domain of the
patient, well-funded, and risk-averse. But they are no longer
unreachable, silently transforming from academic curiosity
to infrastructural default by infiltrating trusted modules.

Act II: The Unverifiable Core and its
Consequences

As MVCs become widespread, their trustworthiness stands
in stark contrast to Artificial Intelligence, which has steadily
evolved since the 2020s. Despite its capabilities, Al continues
to struggle with hallucination and susceptibility to manipu-
lated inputs. Al functionality remains firmly categorized as

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

The Proof Must Go On

"untrustworthy but useful," with developers implementing
hard-coded bounds to prevent erroneous outputs from affect-
ing deterministic systems. Many formal methods researchers
view this cautious approach favorably, as it aligns with their
practice of proving properties of outputs without reasoning
about their generation.

Concurrently, low-level I/O operations interacting with
hardware become the frontier for verifying high-level code.
These operations, essential to every computing aspect, present
unique challenges due to their interaction with the physical
world. Researchers begin formally describing these effects
where possible, sharing machine-parseable libraries of spec-
ifications. Like Al, these fundamental operations and their
documented effects become necessary components of the
trusted computing base for all software.

The combination of MVCs and this pragmatic approach
to unverifiable components raises the security baseline for
many critical applications. For the first time, the annual
number of successful cyberattacks decreases for several con-
secutive years.

However, this progress proves insufficient. Continued
large-scale breaches of medical and financial systems with
exponentially increasing societal costs remind the world that
while opportunistic attacks have decreased, sophisticated
cybercriminals remain active. The piecemeal replacement
of components cannot fully secure software built on funda-
mentally vulnerable foundations.

Act III: Education, the Backstage Revolution

A quiet revolution unfolds in classrooms worldwide. For-
mal methods, once confined to graduate-level seminars and
specialized industry sectors, permeate educational curricula
as cyberattacks force institutions to support such studies.
Verification becomes not just an ideal but a necessary skill
for the next generation of developers.

By the mid-40s, formal methods have been reintegrated
into core computer science curricula, returning to the vision
of the field’s founders. Universities revamp their teaching
models to reflect the new reality: software is not merely a
product but a promise. Every line of code carries the weight
of trust, and every developer must be equipped to uphold
that promise. These educational models elegantly blend the-
oretical frameworks for program analysis and verification
with practical software development. Students learn to use
verification tools within their standard development envi-
ronments.

Within existing developer communities, knowledge of
formal methods becomes standard. Online forums, local
meetups, and open-source projects become invaluable re-
sources as a culture of collaboration around verified software
emerges. Practitioners increasingly view formal methods not
as a barrier but as a tool for improving their daily work.

SPLASH ’25, June 03-05, 2018, Woodstock, NY

In 2049, Rowan Carter, a Cornell University graduate stu-
dent, achieves a breakthrough that marks a turning point.
Carter demonstrates the theoretical ability to automatically
decide the behavior of a broader class of common loops than
previously thought possible. These loops, which had been
considered impossible to verify without manual intervention,
can now be automatically analyzed and verified.

This advancement is monumental. Loops, present in nearly
every program, had long been a source of uncertainty in ver-
ification. While formal methods had progressed significantly
in verifying control flow, data dependencies, and memory
access, loops remained an enigmatic and computationally
expensive challenge. With Carter’s method, developers no
longer need to manually reason through termination, bounds,
or safety properties of these loops.

Continuous integration systems with formal methods ca-
pabilities are quickly updated with this functionality, en-
abling automatic verification of billions of lines of code for
critical security and correctness properties. These new analy-
sis techniques immediately begin preventing cyberattacks on
a large scale, reducing yearly incidents to levels not seen in
decades. By 2055, a generation of formal methods-educated
developers has established itself in development and secu-
rity positions, now required to defend only against attacks
targeting truly undecidable loop behavior.

The integration of formal methods into education doesn’t
just improve software safety — it transforms a generation
of developers. They no longer simply write code to clear
backlogs; they become engineers of trust, architects, and
maintainers of the trustworthy systems upon which society
depends. Carter’s 2049 breakthrough symbolizes this trans-
formation: not merely a singular achievement but a milestone
in an ongoing revolution reshaping how we conceptualize
code and correctness.

Epilogue

The success of formal methods wasn’t the result of dramatic
breakthroughs but incremental transformation. What began
as a niche academic pursuit gradually became integral to
mainstream software development through quiet, deliberate
changes. Today, formal methods are embedded in everything
from simple applications to critical infrastructure, demon-
strating the power of steady, piecemeal progress. The future
of formal methods, though still evolving, stands on a foun-
dation of 150 years of persistent, transformative work.

Received 20 February 2007; revised 12 March 2009; accepted 5 June
2009

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

	Abstract

