
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

The Proof Must Go On
Formal Methods in the Theater of Secure Software Development of the Future

Charles Averill

charles@utdallas.edu
University of Texas at Dallas

Dallas, Texas, USA

2020 2030 2040 2050 2060
Year

0

20

40

60

80

100

120

140

160

Re
co

rd
ed

 C
yb

er
 A

tta
ck

s (
in

 m
illi

on
s)

Recorded Cyber Attacks
Estimated Cost

0

1

2

3

4

Es
tim

at
ed

 C
os

t o
f C

yb
er

cr
im

e 
($

 tr
illi

on
)

Cyber Attacks and Costs (2016-2060)

Sources: Statista, CISSM, FBI, IMF

Figure 1. Recorded cyberattacks and their cumulative costs over the first half of the 21
st
century.

1

Abstract
Formal Methods (FM) will not arrive with fanfare. It will

spread quietly, not as a revolution, but as a patch: reviewed,

merged, and dismissed. In the coming century, the decades-

old practice of simply testing code will collapse under the

weight of cyberattacks and development complexity.

It is succeeded by a slower, more methodical approach as

FM becomes infrastructure. Verified C libraries thread their

way into the systems that run the internet. Model checkers

embed themselves in CI pipelines. Modern type systems

reach the masses. AI and IO remain stubbornly unverifiable

and insecure, forcing industry to work towards a deeper

form of trust. Meanwhile, a generation of developers learns

to write specifications not as a niche academic exercise, but

as a matter of professional survival.

This paper tells a fictional, yet historically-grounded, story

of how formal verification goes from lofty fantasy to invisible

standard throughout the century, and how, without anyone

noticing, the proof goes on.

SPLASH ’25, Singapore
© 2025 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-XXXX-X/2018/06

ACM Reference Format:
Charles Averill. 2018. The Proof Must Go On: Formal Methods

in the Theater of Secure Software Development of the Future. In

Proceedings of Make sure to enter the correct conference title from
your rights confirmation email (SPLASH ’25). ACM, New York, NY,

USA, 4 pages.

Prologue: The Wild West
In the early 21

st
century, FM was an overlooked aspect of

software development for most practitioners. The typical

developer’s primary objective was speed. Finishing current

tasks quickly allowed one to address the backlog of features

and bugs that had accumulated overmonths. In this unending

race against time, verification became a luxury only a few

large companies and governments could afford. This created

a security inequality: the most critical systems benefited

from rigorous verification, while software used by schools,

hospitals, and small businesses relied on hope, patches, and

best-effort testing. In short, the mathematical principles that

ensured the safety of aviation and banking systems remained

inaccessible to the masses.

These early formal methods encompassed a spectrum of

guarantees. At one end lie “lightweight formal methods [1],”

1
Interpolated from historical FBI cybercrime data

1

https://orcid.org/0000-0001-6614-1808


111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

SPLASH ’25, October 12–18, 2025, Singapore Averill

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

collections of dedicated tools for checks of typing, bounds,

and memory safety. At the other, we find machine-checked

mathematical arguments that programs conform to formal

specifications. Between these poles existed a diverse toolkit:

SAT solvers, symbolic execution engines, proof checkers,

and refinement type systems, all attempting to answer the

fundamental question: "Does this program behave how we

want it to?"

Many FM initiatives pursued a high-level strategy: devel-

oping new languages, compilers, and operating systems ver-

ified from first principles. This "top-down" formal methods

approach aimed for theoretical perfection, building upward

from pure foundations. However, real-world systems tended

to resist such clean-slate approaches. Production software

was remarkably complex, legacy-bound, and interconnected.

These complexities were often trusted and hand-waved away

in the name of common sense and development time. Due to

their technical elegance, purely top-down efforts commonly

reached deployment, but their reliance on trust meant they

were built on potentially-faulty guarantees.

The counter to these initiatives, "bottom-up" formal meth-

ods, entailed reasoning exclusively about the behavior of

machines rather than the languages and systems that ab-

stracted on top of them. Despite their power and generality,

the use of these techniques required deeper knowledge and

significantly more effort than their counterparts due to the

complexity that lies at the base of physical computation. This

high barrier to entry meant that bottom-up FM was often

overlooked or dismissed as unproductive or unnecessary.

The following history of formal methods details not rev-

olutionary replacement, but methodical, incremental trans-

formation. This essay traces FM’s trajectory from academic

idealism and intense effort to deeply integrated, production-

level infrastructure. A backstage revolution that continued

while the audience was none the wiser.

Act I: Meeting in the Middle
Top-down formal methods had long been championed by

researchers as the cleanest path to correctness. They offered

compelling visions: verified languages, compilers, and ker-

nels, all constructed from first principles. Yet as these systems

confronted real-world deployment, their limitations became

clearer.

Several large bodies of critical code were found to be im-

possible to verify using thesemethods. The foremost example

of this issue was in C runtime libraries: colossal collections

of code built to facilitate communication between programs

and the machines they ran on. Due to their low-level nature,

they contain instructions that interface directly with hard-

ware: an interaction impossible to formally quantify with the

techniques of the time. As a result, the only sound way these

instructions could be modeled was by assuming they wreak

havoc on the state of the machine, making any application

of existing FM essentially impossible.

As top-down approaches encountered their natural bound-

aries, bottom-up techniques began to advanced rapidly. New

government initiatives [2, 3] into language security sparked

interest in FM targeting low-level systems. As researchers

targeted low-level systems, they inevitably reached bare

metal, prompting collaborations with experts in the already-

decades-old field of hardware verification. Although the

study of this paradigm had not made the arduous process of

reasoning about a machine’s behavior at the binary level any

easier, the increased interest set a strong course for success.

It began to be clear to both researchers and engineers that

a convergence of top-down and bottom-up FM would yield

astronomical results.

This realization gave rise to a hybrid approach: “full-stack

proof frontends,” which allowed users to reason about both

the high- and low-level behavior of code at unprecedented

levels of rigor. Following a wave of cyberattacks exploit-

ing vulnerabilities in how memory allocators stored pointer

metadata, DARPA launched the VERIFEX 2
project in 2033,

encouraging the development of formally-verified, modular

software components to replace trusted low-level compo-

nents such as allocators, parsers, encoders, and protocol

handlers. These Modular Verified Components (MVCs) were

first utilized on a large scale by hosting providers and finan-

cial institutions, but quickly disseminated to the majority of

organizations by replacing existing components of popular

libraries and toolchains.

By the late 2030s, the first formally verified C standard

library, Veritas, entered production, catalyzing a gradual mi-

gration through the open-source ecosystem. Developed to

use the mass of newly-created MVCs to inplace-modify ex-

isting standard libraries, the GNU C Library soon provided

options to use the verified alternatives of functions it shared

with Veritas, and embedded firmware followed. Soon, billions

of devices relied on formally verified routines for memory

management, string manipulation, and concurrency with-

out their developers needing to understand the underlying

proofs.

Despite the explosion of use of software touched by FM,

integration of these techniques into everyday development

could not be accomplished due to the general public’s lack of

awareness of them. The first step towards everyday integra-

tion had already been plotted out decades before: building

expressive constructs into commonly-utilized programming

languages. Large amounts of work now went into providing

these popular languages with expressive types and patterns

to better communicate developer intention. With compil-

ers allowing for heightened expressiveness, new verification

pipelines arose that chained the compiler and the source

2
“VERified, Reusable Infrastructure for Everything eXecutable”

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

The Proof Must Go On SPLASH ’25, October 12–18, 2025, Singapore

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

program with large language models (LLMs) and proof as-

sistants, enabling unprecented, untrusted, automated verifi-

cation.

Verified components proliferated, with public reposito-

ries of proven algorithms replacing ad-hoc implementations.

Open-source contributions began to include not just tests but

proofs of machine-checkable properties. Developers increas-

ingly reused verified components instead of re-implementing

common routines. FM remained resource-intensive, but no

longer out of reach. By infiltrating trusted modules FM had

silently transformed from academic curiosity to infrastruc-

tural default.

Act II: The Unverifiable Core and its
Consequences
As MVCs become widespread, their trustworthiness stands

in stark contrast to Artificial Intelligence, which has steadily

evolved since the 2020s. Despite its capabilities, AI continues

to struggle with hallucination and susceptibility to manipu-

lated inputs. AI functionality remains firmly categorized as

"untrustworthy but useful," with developers implementing

hard-coded bounds and limiting the scope of the behavior

of their models to prevent erroneous outputs from affect-

ing sensitive deterministic systems. Many FM researchers

view this cautious approach favorably, as it aligns with their

practice of proving properties of outputs without reasoning

about their generation.

Concurrently, low-level I/O operations interacting with

hardware become the frontier for verifying high-level code.

These operations, essential to every computing aspect, present

unique challenges due to their interaction with the physical

world. Researchers begin formally describing these effects

where possible, sharing machine-parseable libraries of hard-

ware specifications. GIANT Labs, (formed by Google, Intel,

AMD, NVIDIA, and TSMC), assembled large datasets of these

hardware specifications, allowing automatic generation of

further formal specifications for new devices through AI-

powered proof automation. Like AI, the remaining undocu-

mented pieces of these interactions make up the the trusted

computing base for huge volumes of software.

The combination of MVCs and this pragmatic approach

to hardware-level components raises the security baseline

for many critical applications. For the first time, the annual

number of successful cyberattacks utilizing hardware side-

channels decreases for several consecutive years.

However, the increased scrutiny into unverifiable hard-

ware component effects also alerts a new generation of at-

tackers that there exists an attack surface that the world’s

best resesarchers cannot reason about. Although exploits

of hardware side-channels have decreased, there remains a

large swath of organizations that fail to properly validate

the behavior of unverifiable components, and large-scale

breaches of medical and financial systems continue. Steadily-

increasing societal costs due to cyber crime remind the world

that, while opportunistic attacks have decreased, sophisti-

cated cyber-criminals remain active. The piecemeal replace-

ment of components cannot fully secure software built on

fundamentally vulnerable foundations.

Act III: Education, the Backstage Revolution
As FM further permeates into industry software development

practice, a quiet revolution unfolds in classrooms worldwide.

The old industrial practices of developing first and testing

later had shown to be completely ineffective, leading to gov-

ernments intervening to force the industry to adapt their

incentives to meet modern-day problems. Formal methods,

once confined to graduate-level seminars and specialized in-

dustry sectors, permeated educational curricula government

and industry institutions support such studies in their own

future interest. Verification becomes not just an ideal, but a

necessary skill for the next generation of developers.

By the mid-40s, formal methods have been reintegrated

into core computer science curricula, returning to the vision

of the field’s founders. Universities revamp their teaching

models to reflect the new reality: software is not merely a

product but a promise. Every line of code carries the weight

of trust, and every developer must be equipped to uphold

that promise. These educational models elegantly blend the-

oretical frameworks for program analysis and verification

with practical software development. Students learn to use

verification tools within their standard development envi-

ronments.

Within existing developer communities, knowledge of

formal methods becomes standard. Online forums, local

meetups, and open-source projects become invaluable re-

sources as a culture of collaboration around verified software

emerges. Practitioners increasingly view formal methods not

as a barrier but as a tool for improving their daily work.

In 2049, Rowan Carter, a Cornell University graduate stu-

dent, achieves a breakthrough that marks a turning point.

Combining lifetimes’ worth of existing research into type the-

ory, proof automation, and automata theory, Carter demon-

strates the theoretical ability to automatically decide the

behavior of a broader class of common loops than previously

thought possible. These loops, which had been considered

impossible to verify without manual intervention, can now

be automatically analyzed and verified.

This advancement is monumental. Loops, present in vir-

tually all programs, had long been a source of uncertainty

in verification. While formal methods had progressed sig-

nificantly in verifying control flow, data dependencies, and

memory access, loops remained an enigmatic and computa-

tionally expensive challenge. With Carter’s method, develop-

ers no longer need to manually reason through termination,

bounds, or safety properties of large swaths of loops.

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

SPLASH ’25, October 12–18, 2025, Singapore Averill

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

Continuous integration systems with formal methods ca-

pabilities are quickly updated with this functionality, en-

abling automatic verification of billions of lines of code for

critical security and correctness properties. These new analy-

sis techniques immediately begin preventing cyberattacks on

a large scale, reducing yearly incidents to levels not seen in

decades. By 2055, a generation of formal methods-educated

developers has established itself in development and secu-

rity positions, now required to defend only against attacks

targeting truly undecidable loop behavior.

The integration of formal methods into education doesn’t

just improve software safety, it transforms a generation of de-

velopers. They no longer simply write code to clear backlogs;

they become engineers of trust, architects, and maintainers

of the trustworthy systems upon which society depends.

Carter’s 2049 breakthrough symbolizes this transformation:

not merely a singular achievement but a milestone in an

ongoing revolution reshaping how we conceptualize code

and correctness.

Epilogue
The success of formal methods wasn’t the result of dramatic

breakthroughs but incremental transformation. What began

as a niche academic pursuit gradually became integral to

mainstream software development through quiet, deliberate

changes. Today, formal methods are embedded in everything

from simple applications to critical infrastructure, demon-

strating the power of steady, piecemeal progress. The future

of formal methods, though still evolving, stands on a foun-

dation of 150 years of persistent, transformative work.

References
[1] Bornholt, J., Joshi, R., Astrauskas, V., Cully, B., Kragl, B., Markle,

S., Sauri, K., Schleit, D., Slatton, G., Tasiran, S., Van Geffen, J., and

Warfield, A. Using lightweight formal methods to validate a key-value

storage node in amazon s3. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles (New York, NY, USA, 2021),

SOSP ’21, Association for Computing Machinery, p. 836–850.

[2] DARPA. TRACTOR: Translating All C to Rust.

[3] DARPA. V-SPELLS: Verified Security and Performance Enhancement

of Large Legacy Software.

Received 24 April 2025; revised 17 July 2025; accepted 5 June 2009

4


	Abstract
	References

