
The Proof Must Go On
Formal Methods in the Theater of Secure Software
Development of the Future

Charles Averill
October 2025

University of Texas at Dallas, Dartmouth College



Trust in Software
(the concept, not an imperative)



What is trust?

• Confidence software behaves as intended
• Reliability, security, correctness
• Trust varies by user and context
• Often invisible until broken

1



Who needs to trust software?

• Users of critical systems (finance, healthcare)
• Governments and regulators
• Developers building on existing code
• Society at large relies on infrastructure

2



What are formal methods?

• Mathematical verification of program correctness
• Proofs, model checking, type systems
• Mostly academic until recently
• Reduce bugs and security vulnerabilities

3



Pioneering



The Early Days

1920s-50s:

• Hilbert’s Program spurs research into fundamental questions
• What is it possible to know? And under what conditions?
• Leads to invention/discovery of foundations of formal
programming languages

Figure 1: Curry, Church, Turing 4



The Early Days

• First electronic computers are developed for military purposes
(so expensive!)

• Scientific/Business computers created post-WW2

Figure 2: ENIAC, Colossus, EDSAC, UNIVAC 1 5



The Software Crisis

• 1960s: Hardware costs drop, but software costs soar
• Problem: how do we stop developers from writing lots of
low-quality, unmaintainable code?

• Solution: robust reasoning tools for program analysis

6



The Software Crisis

• Goal: build reasoning tools in order to develop better software
• Denotational semantics introduced
• Hoare Logic, weakest precondition inference, “Assigning Meaning
to Programs”

Figure 3: Sir Tony Hoare, Robert Floyd, Edsger Dijkstra

7



Hitting the Books

• By 1970s/80s, FM is common in standard university curricula
• Students required to develop program analysis skills
• Generations educated on prior 20 years of research

8



Giving it to The Man

• Programming practices influenced by defense needs
• Government programs: Cold War funding, Ada
• Type systems, model checking, process calculi developed

Figure 4: Ada, D-17B Missile Guidance System

9



The New Century



The Divergence

• Two (rough) camps of program analysis: formal methods and
programming techniques

• Programming methods and techniques becoming widely
adopted: unit testing frameworks, smarter IDEs, software model
checking

• FM progresses in the background: separation logic, certified
compilers, SMT-COMP

Figure 5: Reynolds, O’Hearn, unit test coverage tool

10



Adoption

• Governments, military, aviation, supply chains adopt many forms
of FM in greater quantities

• Cloud and HFT companies adopt verification
• Verified components enter production gradually
• Early industrial successes build confidence

11



Back to the Present

Where are we now?

• Wealth of tools for all purposes at our disposal
• Uneven adoption due to high costs of training developers,
rewriting software

• Adoption being driven by pressure from cybercrime
• FM courses slowly return to undergrad programs as electives

12



The Pattern



Academia

• Most FM discoveries come from universities
• Motivated by solving current problems of the day
• Hilbert’s Program, code quality, code security
• Research often years ahead of industrial use

13



Government

• Funds large-scale research and applies it to critical systems
• Takes academic ideas and sponsors iteration and application
• WW2 cipher-breaking, Cold War systems, drones, computer
infrastructure

• Often the only source of funding large enough to take risks on
unproven research

14



Industry

• Adopts proven techniques from government and academia
• Adoption motivated by profitability or infrastructure needs
• Typically waits for validated, large-scale results
• Exception: massive companies can fund some research
themselves

15



Education

• Students given opportunities to study cutting-edge research, but
not required

• Curriculum focuses on marketable skills first
• Writing correct software, OOP, modern programming practices
• Prepares next generation to adopt new methods when they
reach industry

16



Summary

Figure 6: From “Thoughts on the interplay between corporate, government,
and university R&D” - Byron Cook [1]

17



The Secure Software of Tomorrow



Timeline

• Hybrid top-down/bottom-up verification
• MVCs, verified libraries, language support
• Dealing with hardware
• Educational reforms driven by cybersecurity needs
• Deus ex Machina

18



Meeting in the Middle

• Combine high-level semantics and low-level effects
• Full-stack proof frontends emerge
• Reason about correctness, processor, timing, cache
• Enables more complete software verification

19



Minimal Verified Components

• Small, verified building blocks to replace critical low-level code
• DARPA-funded development
• Rapidly proliferate across libraries
• Parsers, encoders, cryptography

20



Veritas

• First verified C standard library
• Uses MVCs extensively
• Compilers allow substitution in standard libraries
• Adoption spreads to embedded and open-source code

21



The Unverifiable Core

• AI and I/O partially unverifiable
• Hybrid trust strategies required
• Hardware specs formalized by GIANT Labs
• Cybercrime acceleration slows, but still grows

22



The Catalyst

• Education increasingly re-adopts FM
• Governments mandate FM for critical software
• Rowan Carter: automated loop verification
• Breakthrough reduces manual reasoning burden

23



The End

• CI pipelines verify complex control flow automatically
• Critical industries reach near-universal coverage
• Cybercrime mitigated by verified software
• FM becomes invisible infrastructure

24



Contact

https://charles.systems/

charles@utdallas.edu

COOK, B.
[PLMW@PLDI24] Thoughts on the interplay between corporate,
government, and university R&D, Jul 2024.

25

https://www.charles.systems/
mailto:charles@utdallas.edu

	Trust in Software (the concept, not an imperative)
	Pioneering
	The New Century
	The Pattern
	The Secure Software of Tomorrow

