The Proof Must Go On

Formal Methods in the Theater of Secure Software Development of the Future

Charles Averill
University of Texas at Dallas
Dallas, USA
charles.averill@utdallas.edu

Cyber Attacks and Costs (2016-2060)

mmm Recorded Cyber Attacks

—e— Estimated Cost
160

140

12i

1=

10

=]

8

S

6

Recorded Cyber Attacks (in millions)
S)

4

S

2

o

o

2020 2030

Sources: Statista, Cl!

IR '| |||

- N) w

Estimated Cost of Cybercrime ($ trillion)

o

2040 2050 2060

"
ISSM, FBI, IMF

Figure 1. Recorded cyberattacks and their cumulative costs over the first half of the 21%! century.!

Abstract

Formal Methods (FM) will not arrive with fanfare. It will
spread quietly, not as a revolution, but as a patch: reviewed,
merged, and dismissed. In the coming century, the decades-
old practice of simply testing code will collapse under the
weight of cyberattacks and development complexity.

It is succeeded by a slower, more methodical approach as
FM becomes infrastructure. Verified C libraries thread their
way into the systems that run the internet. Model checkers
embed themselves in CI pipelines. Modern type systems
reach the masses. Al and IO remain stubbornly unverifiable
and insecure, forcing industry to work towards a deeper
form of trust. Meanwhile, a generation of developers learns
to write specifications not as a niche academic exercise, but
as a matter of professional survival.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

Onward! °25, Singapore, Singapore

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2151-9/25/10
https://doi.org/10.1145/3759429.3762634

This paper tells a fictional, yet historically-grounded, story
of how formal verification goes from lofty fantasy to invisible
standard throughout the century, and how, without anyone
noticing, the proof goes on.

CCS Concepts: » Software and its engineering — Soft-
ware notations and tools; - Security and privacy — For-
mal security models; Software security engineering;
« Social and professional topics — Computer crime;
Government technology policy.

Keywords: Formal Software Verification, Proof Automation,
Modular Verified Components, Education in Formal Methods,
Specification-Driven Development

ACM Reference Format:

Charles Averill. 2025. The Proof Must Go On: Formal Methods
in the Theater of Secure Software Development of the Future. In
Proceedings of the 2025 ACM SIGPLAN International Symposium on
New Ideas, New Paradigms, and Reflections on Programming and
Software (Onward! °25), October 12—18, 2025, Singapore, Singapore.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3759429.
3762634

Interpolated from historical FBI cybercrime data

https://orcid.org/0000-0001-6614-1808
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3759429.3762634
https://doi.org/10.1145/3759429.3762634
https://doi.org/10.1145/3759429.3762634

Onward! ’25, October 12-18, 2025, Singapore, Singapore

Prologue: The Wild West

In the early 21% century, FM was an overlooked aspect of
software development for most practitioners. The typical
developer’s primary objective was speed. Finishing current
tasks quickly allowed one to address the backlog of features
and bugs that had accumulated over months. In this unending
race against time, verification became a luxury only a few
large companies and governments could afford. This created
a security inequality: the most critical systems benefited
from rigorous verification, while software used by schools,
hospitals, and small businesses relied on hope, patches, and
best-effort testing. In short, the mathematical principles that
ensured the safety of aviation and banking systems remained
inaccessible to the masses.

These early formal methods encompassed a spectrum of
guarantees. At one end lie “lightweight formal methods [1],
collections of dedicated tools for checks of typing, bounds,
and memory safety. At the other, we find machine-checked
mathematical arguments that programs conform to formal
specifications. Between these poles existed a diverse toolkit:
SAT solvers, symbolic execution engines, proof checkers,
and refinement type systems, all attempting to answer the
fundamental question: "Does this program behave how we
want it to?"

Many FM initiatives pursued a high-level strategy: devel-
oping new languages, compilers, and operating systems ver-
ified from first principles. This "top-down" formal methods
approach aimed for theoretical perfection, building upward
from pure foundations. However, real-world systems tended
to resist such clean-slate approaches. Production software
was remarkably complex, legacy-bound, and interconnected.
These complexities were often trusted and hand-waved away
in the name of common sense and development time. Due to
their technical elegance, purely top-down efforts commonly
reached deployment, but their reliance on trust meant they
were built on potentially-faulty guarantees.

The counter to these initiatives, "bottom-up" formal meth-
ods, entailed reasoning exclusively about the behavior of
machines rather than the languages and systems that ab-
stracted on top of them. Despite their power and generality,
the use of these techniques required deeper knowledge and
significantly more effort than their counterparts due to the
complexity that lies at the base of physical computation. This
high barrier to entry meant that bottom-up FM was often
overlooked or dismissed as unproductive or unnecessary.

The following history of formal methods details not rev-
olutionary replacement, but methodical, incremental trans-
formation. This essay traces FM’s trajectory from academic
idealism and intense effort to deeply integrated, production-
level infrastructure. A backstage revolution that continued
while the audience was none the wiser.

Averill

Act I: Meeting in the Middle

Top-down formal methods had long been championed by
researchers as the cleanest path to correctness. They offered
compelling visions: verified languages, compilers, and ker-
nels, all constructed from first principles. Yet as these systems
confronted real-world deployment, their limitations became
clearer.

Several large bodies of critical code were found to be im-
possible to verify using these methods. The foremost example
of this issue was in C runtime libraries: colossal collections
of code built to facilitate communication between programs
and the machines they ran on. Due to their low-level nature,
they contain instructions that interface directly with hard-
ware: an interaction impossible to formally quantify with the
techniques of the time. As a result, the only sound way these
instructions could be modeled was by assuming they wreak
havoc on the state of the machine, making any application
of existing FM essentially impossible.

As top-down approaches encountered their natural bound-
aries, bottom-up techniques began to advanced rapidly. New
government initiatives [2, 3] into language security sparked
interest in FM targeting low-level systems. As researchers
targeted low-level systems, they inevitably reached bare
metal, prompting collaborations with experts in the already-
decades-old field of hardware verification. Although the
study of this paradigm had not made the arduous process of
reasoning about a machine’s behavior at the binary level any
easier, the increased interest set a strong course for success.
It began to be clear to both researchers and engineers that
a convergence of top-down and bottom-up FM would yield
astronomical results.

This realization gave rise to a hybrid approach: “full-stack
proof frontends,” which allowed users to reason about both
the high- and low-level behavior of code at unprecedented
levels of rigor. Following a wave of cyberattacks exploit-
ing vulnerabilities in how memory allocators stored pointer
metadata, DARPA launched the VERIFEX? project in 2033,
encouraging the development of formally-verified, modular
software components to replace trusted low-level compo-
nents such as allocators, parsers, encoders, and protocol
handlers. These Modular Verified Components (MVCs) were
first utilized on a large scale by hosting providers and finan-
cial institutions, but quickly disseminated to the majority of
organizations by replacing existing components of popular
libraries and toolchains.

By the late 2030s, the first formally verified C standard
library, Veritas, entered production, catalyzing a gradual mi-
gration through the open-source ecosystem. Developed to
use the mass of newly-created MVCs to inplace-modify ex-
isting standard libraries, the GNU C Library soon provided
options to use the verified alternatives of functions it shared
with Veritas, and embedded firmware followed. Soon, billions

2“VERified, Reusable Infrastructure for Everything eXecutable”

The Proof Must Go On

of devices relied on formally verified routines for memory
management, string manipulation, and concurrency with-
out their developers needing to understand the underlying
proofs.

Despite the explosion of use of software touched by FM,
integration of these techniques into everyday development
could not be accomplished due to the general public’s lack of
awareness of them. The first step towards everyday integra-
tion had already been plotted out decades before: building
expressive constructs into commonly-utilized programming
languages. Large amounts of work now went into providing
these popular languages with expressive types and patterns
to better communicate developer intention. With compil-
ers allowing for heightened expressiveness, new verification
pipelines arose that chained the compiler and the source
program with large language models (LLMs) and proof as-
sistants, enabling unprecented, untrusted, automated verifi-
cation.

Verified components proliferated, with public reposito-
ries of proven algorithms replacing ad-hoc implementations.
Open-source contributions began to include not just tests but
proofs of machine-checkable properties. Developers increas-
ingly reused verified components instead of re-implementing
common routines. FM remained resource-intensive, but no
longer out of reach. By infiltrating trusted modules FM had
silently transformed from academic curiosity to infrastruc-
tural default.

Act II: The Unverifiable Core and its
Consequences

As MVCs become widespread, their trustworthiness stands
in stark contrast to Artificial Intelligence, which has steadily
evolved since the 2020s. Despite its capabilities, Al continues
to struggle with hallucination and susceptibility to manipu-
lated inputs. AI functionality remains firmly categorized as
"untrustworthy but useful," with developers implementing
hard-coded bounds and limiting the scope of the behavior
of their models to prevent erroneous outputs from affect-
ing sensitive deterministic systems. Many FM researchers
view this cautious approach favorably, as it aligns with their
practice of proving properties of outputs without reasoning
about their generation.

Concurrently, low-level I/O operations interacting with
hardware become the frontier for verifying high-level code.
These operations, essential to every computing aspect, present
unique challenges due to their interaction with the physical
world. Researchers begin formally describing these effects
where possible, sharing machine-parseable libraries of hard-
ware specifications. GIANT Labs, (formed by Google, Intel,
AMD, NVIDIA, and TSMC), assembled large datasets of these
hardware specifications, allowing automatic generation of

Onward! "25, October 12-18, 2025, Singapore, Singapore

further formal specifications for new devices through Al-
powered proof automation. Like Al, the remaining undocu-
mented pieces of these interactions make up the the trusted
computing base for huge volumes of software.

The combination of MVCs and this pragmatic approach
to hardware-level components raises the security baseline
for many critical applications. For the first time, the annual
number of successful cyberattacks utilizing hardware side-
channels decreases for several consecutive years.

However, the increased scrutiny into unverifiable hard-
ware component effects also alerts a new generation of at-
tackers that there exists an attack surface that the world’s
best resesarchers cannot reason about. Although exploits
of hardware side-channels have decreased, there remains a
large swath of organizations that fail to properly validate
the behavior of unverifiable components, and large-scale
breaches of medical and financial systems continue. Steadily-
increasing societal costs due to cyber crime remind the world
that, while opportunistic attacks have decreased, sophisti-
cated cyber-criminals remain active. The piecemeal replace-
ment of components cannot fully secure software built on
fundamentally vulnerable foundations.

Act III: Education, the Backstage Revolution

As FM further permeates into industry software development
practice, a quiet revolution unfolds in classrooms worldwide.
The old industrial practices of developing first and testing
later had shown to be completely ineffective, leading to gov-
ernments intervening to force the industry to adapt their
incentives to meet modern-day problems. Formal methods,
once confined to graduate-level seminars and specialized in-
dustry sectors, permeated educational curricula government
and industry institutions support such studies in their own
future interest. Verification becomes not just an ideal, but a
necessary skill for the next generation of developers.

By the mid-40s, formal methods have been reintegrated
into core computer science curricula, returning to the vision
of the field’s founders. Universities revamp their teaching
models to reflect the new reality: software is not merely a
product but a promise. Every line of code carries the weight
of trust, and every developer must be equipped to uphold
that promise. These educational models elegantly blend the-
oretical frameworks for program analysis and verification
with practical software development. Students learn to use
verification tools within their standard development envi-
ronments.

Within existing developer communities, knowledge of
formal methods becomes standard. Online forums, local
meetups, and open-source projects become invaluable re-
sources as a culture of collaboration around verified software
emerges. Practitioners increasingly view formal methods not
as a barrier but as a tool for improving their daily work.

Onward! ’25, October 12-18, 2025, Singapore, Singapore

In 2049, Rowan Carter, a Cornell University graduate stu-
dent, achieves a breakthrough that marks a turning point.
Combining lifetimes’ worth of existing research into type the-
ory, proof automation, and automata theory, Carter demon-
strates the theoretical ability to automatically decide the
behavior of a broader class of common loops than previously
thought possible. These loops, which had been considered
impossible to verify without manual intervention, can now
be automatically analyzed and verified.

This advancement is monumental. Loops, present in vir-
tually all programs, had long been a source of uncertainty
in verification. While formal methods had progressed sig-
nificantly in verifying control flow, data dependencies, and
memory access, loops remained an enigmatic and computa-
tionally expensive challenge. With Carter’s method, develop-
ers no longer need to manually reason through termination,
bounds, or safety properties of large swaths of loops.

Continuous integration systems with formal methods ca-
pabilities are quickly updated with this functionality, en-
abling automatic verification of billions of lines of code for
critical security and correctness properties. These new analy-
sis techniques immediately begin preventing cyberattacks on
a large scale, reducing yearly incidents to levels not seen in
decades. By 2055, a generation of formal methods-educated
developers has established itself in development and secu-
rity positions, now required to defend only against attacks
targeting truly undecidable loop behavior.

The integration of formal methods into education doesn’t
just improve software safety, it transforms a generation of de-
velopers. They no longer simply write code to clear backlogs;
they become engineers of trust, architects, and maintainers
of the trustworthy systems upon which society depends.
Carter’s 2049 breakthrough symbolizes this transformation:

Averill

not merely a singular achievement but a milestone in an
ongoing revolution reshaping how we conceptualize code
and correctness.

Epilogue

The success of formal methods wasn’t the result of dramatic
breakthroughs but incremental transformation. What began
as a niche academic pursuit gradually became integral to
mainstream software development through quiet, deliberate
changes. Today, formal methods are embedded in everything
from simple applications to critical infrastructure, demon-
strating the power of steady, piecemeal progress. The future
of formal methods, though still evolving, stands on a foun-
dation of 150 years of persistent, transformative work.

References

[1] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bern-
hard Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Ser-
dar Tasiran, Jacob Van Geffen, and Andrew Warfield. 2021. Using
Lightweight Formal Methods to Validate a Key-Value Storage Node

in Amazon S3. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (Virtual Event, Germany) (SOSP °21).

Association for Computing Machinery, New York, NY, USA, 836-850.
doi:10.1145/3477132.3483540
[2] DARPA Information Innovation Office. 2023. V-SPELLS: Veri-
fied Security and Performance Enhancement of Large Legacy Soft-
ware. https://www.darpa.mil/research/programs/verified-security-
and-performance-enhancement-of-large-legacy-software Accessed:
2025-08-15.
DARPA Information Innovation Office. 2024. TRACTOR: Translating
All C to Rust. https://www.darpa.mil/research/programs/translating-
all-c-to-rust Accessed: 2025-08-15.

[3

[t

Received 2025-04-24; accepted 2025-08-11; revised 24 April 2025;
revised 17 July 2025; accepted 12 August 2025

https://doi.org/10.1145/3477132.3483540
https://www.darpa.mil/research/programs/verified-security-and-performance-enhancement-of-large-legacy-software
https://www.darpa.mil/research/programs/verified-security-and-performance-enhancement-of-large-legacy-software
https://www.darpa.mil/research/programs/translating-all-c-to-rust
https://www.darpa.mil/research/programs/translating-all-c-to-rust

	Abstract
	References

