
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Prettybird: A DSL for Programmatic Font Compilation
Anonymous Author(s)

Figure 1: A pangram of the Latin alphabet using the font “Prettybird Roman,” compiled with Prettybird.

ABSTRACT
Prettybird is a new domain-specific font description language that
simplifies the early steps of font design. Its simple grammar and
reusable functions make font design more approachable to begin-
ners while reducing the amount of time required for experts to
craft a new font. Additionally, Prettybird avoids certain pitfalls of
METAFONT, including reduced syntactic complexity, better inte-
gration with graphical font design software, and improved recursive
features for automating the design of high-complexity glyphs.

1 PROBLEM AND MOTIVATION
Improvements in display technology over time have led to an in-
crease in public interest in the field of digital typography. As a
result, interest in non-standard font usage has grown over time.
Figure 2 shows the approximately 80% increase in webfont requests
from 2010–2022 [5].

This rising demand for custom or otherwise non-standard fonts
has been driven primarily by rapid growth in the popularity of
web application development, which has made diverse fonts more
accessible to artists and designers. As such software has become
more common, font design has attracted more beginners.

However, the creation of a new font requires a large amount of
time. Many of the existing tools required to design high-quality
custom fonts are either archaic or expensive. These hurdles hinder
the ability of beginners to participate in this form of expression.

Designing tools that best utilize the strengths of both graphical
font design software and font description languages provides ex-
isting font designers with more agency in designing unique fonts,
and new font designers with a modern and versatile approach to
the practice.

2 BACKGROUND AND RELATEDWORK
METAFONT is an existing font description language developed by
Knuth [3] as a companion to TEX. Although a comprehensive and
versatile system, METAFONT was designed early enough in the
field of computing that it was abandoned as graphical font design
tools overcame hardware limitations [1].

METAFONT also suffers from a complex syntax, in part due
to the technological limitations placed on it by its implementa-
tion languages. Its reliance on symbols and short keywords can

Figure 2: Webfont usage from Nov 15 2010 to Aug 1 2022 [5]

make it seem archaic to programmers accustomed to more verbose
description languages such as SVG and LATEX.

3 APPROACH AND UNIQUENESS
Prettybird aims to replicate the broad capabilities of METAFONT

while resolving its syntax issues, and integrating with graphical
font design software to provide a modern and versatile font design
experience for the maximum amount of users. It provides higher-
level features like recursion to allow more intricacy and complexity
in glyphs. In summary, we make the following contributions:

• We design and implement a compiler that generates BDF,
SVG, and TTF font binaries from Prettybird source code.

• The compiler back-end additionally outputs curve data
viewable within the FontForge GUI, for quick and seamless
visual feedback to users.

• We design and implement a novel type system consisting of
2 types (numbers and pairs) that is functionally equivalent
to METAFONT’s 8-type system.

• The compiler back-end also implements a type-checker that
enforces type-correctness of atom arguments

• We present an anonymous user survey displaying user pref-
erence of Prettybird over METAFONT

3.1 Language Design
Prettybird operates on the concepts of a glyph space stack and
atoms to provide a foundation for outline font description. A glyph
space is a two-dimensional plane containing curve information, and
an atom is a fundamental curve function. Possible atoms include
vectors, ellipses, rectangles, and quadratic Bézier curves.

1



Anon.

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

1 // attach_point is the top -centermost point where the serif

2 // and symbol meet

3 define horizontal_serif(attach_point , face_direction , width) {

4 draw vector(attach_point - (width , 0),

5 attach_point + (width , 0))

6 draw bezier(attach_point - (width , 0),

7 attach_point - (width , 0) + (width * 0.7,

8 face_direction * 4),

9 attach_point - (width , 0) + (width * 0.7, 0))

10 draw bezier(attach_point + (width , 0),

11 attach_point + (width , face_direction * 4) -

12 (width * 0.7, 0),

13 attach_point + (width , 0) - (width * 0.7, 0))

14 }

15
16 define bubble(top , bottom , width , direction) {

17 // inner bubble

18 draw bezier(top , top + (direction * width , width),

19 top + (direction * width , 0))

20 draw bezier(top , top + (direction * width * 1.25, width),

21 top + (direction * width * 1.25, 0))

22 // outer bubble

23 draw bezier(top + (direction * width , width), bottom ,

24 bottom + (direction * width , 0))

25 draw bezier(top + (direction * width * 1.25, width),

26 bottom ,

27 bottom + (direction * width * 1.25, 0))

28 }

29
30 char B {

31 base { blank(48, 72) }

32
33 steps {

34 draw filled rectangle ((21, 12), (27, 52))

35
36 horizontal_serif ((24, 12), 1, 10)

37 horizontal_serif ((24, 52), -1, 10)

38
39 bubble ((32, 12), (32, 28), 8, 1)

40 bubble ((27, 28), (27, 52), 12, 1)

41 }

42 }

Figure 3: Code example to generate “B” glyph

Glyph spaces are spawned upon function entry. When a function
terminates, the positive curve data within the glyph space, drawn
using atom calls or other function calls, is binary-unioned with the
glyph space directly underneath the current one in the stack. This
provides a simple programmatic foundation for glyph design that
intuitively resembles layered drawing.

3.2 Compiler Implementation
Prettybird’s compiler automatically generates BDF-, SVG-, and TTF-
formatted font files from Prettybird source code. The compiler
backend additionally utilizes the FontForge API to convert the
language’s IR (glyph spaces) into curve information compatible
with FontForge’s graphical font editor UI.

As part of the continued work on Prettybird, we are currently
extending the language to add support for an interactive preview
window using FontForge that will allow users to combine the bene-
fits of language-based and GUI-based font design. Additionally, we
are adding support for user-defined brushes, a feature carried over
from METAFONT.

3.3 User Study
Our anonymous user study presented respondents with code sam-
ples and glyphs of Prettybird and METAFONT. Prettybird code

Figure 4: The “B” glyph generated by the code example

Claimed Prettybird "I" glyph code 
was more readable

Claimed METAFONT "I" glyph code 
was more readable

Preferred to modify Prettybird "I" 
glyph code to change glyph shape

Preferred to modify METAFONT "I" 
glyph code to change glyph shape

100%

88%

12%

100%

80%

20%

Preferences for "I" glyph

Programmers
Font Designers

Claimed Prettybird spiral 
glyph code was more readable

Claimed METAFONT spiral 
glyph code was more readable

Preferred to modify Prettybird spiral 
glyph code to change glyph shape

Preferred to modify METAFONT spiral 
glyph code to change glyph shape

84%

16%

88%

12%

90%

10%

90%

10%

82%

18%

86%

14%

Preferences for spiral glyph

Programmers
Font Designers
Familiar with Bezier Curves

Figure 5: Preferences between Prettybird and METAFONT

for the capital "I" and spiral glyphs.

samples were written to replicate the output of corresponding
METAFONT samples taken from the METAFONTbook [4] and
Dotted and Dashed Lines in METAFONT [2].

Figure 5 shows that respondents in all categories of familiarity
with programming, font design, and Bézier curves overwhelmingly
preferred the readability of Prettybird to METAFONT, with a
sample size of 62. Respondents were selected from online font
design communities and university computer science programs,
self-identifying themselves into the aforementioned categories of
familiarity.

4 RESULTS AND CONTRIBUTIONS
Prettybird is an accessible and powerful description language for
programmatic font design. The language offers a simple grammar
and common font design utilities to provide a modern mode of font
design. By improving on multiple aspects of METAFONT, Pretty-
bird provides the opportunity to revitalize the art of programmatic
font design.

REFERENCES
[1] Nelson H. F. Beebe. 2005. The design of TEX and METAFONT: A retrospective.
[2] Jeremy Gibbons. 1970. Dotted and Dashed Lines in METAFONT. (02 1970).
[3] Donald Ervin Knuth. 1990. Computers and typesetting. Vol. D - METAFONT: The

Program. Addison Wesley.
[4] Donald Ervin Knuth. 1990. Computers and typesetting. Vol. C - The METAFONT-

book. Addison Wesley.
[5] Bram Stein. 2022. Webfont usage. Fonts | 2022 | The Web Almanac by HTTP Archive

(Sep 2022). https://almanac.httparchive.org/en/2022/fonts#fig-1

2

https://almanac.httparchive.org/en/2022/fonts#fig-1

	Abstract
	1 Problem and Motivation
	2 Background and Related Work
	3 Approach and Uniqueness
	3.1 Language Design
	3.2 Compiler Implementation
	3.3 User Study

	4 Results and Contributions
	References

