
Formally-Verified, Tight Timing Constraints for Machine Code
https://www.charles.systems/ Charles Averill charles@utdallas.edu

Co-Authors: Ilan Buzzetti, Wei-Cheng Wu Advisors: Kevin Hamlen, Christophe Hauser

The University of Texas at Dallas, Dartmouth College

Motivation

Many mission‐critical computing systems operate under tight timing con‐
straints, where deviations in execution time can have severe consequences.
Two important categories are real‐time systems, which must meet timing
deadlines to ensure correct behavior, and cryptographic systems, whichmust
guard against timing side‐channel attacks.

Traditional verification techniques focused on bug‐finding are often insuffi‐
cient for obtaining airtight, machine‐checkable formal guarantees about tim‐
ing properties. For example, real‐time verification methods rely on conserva‐
tive WCET bounds that might not accurately reflect true execution behavior.
Cryptographic verification techniques, such as constant‐time programming
methodologies, require careful manual implementation and do not inherently
prove the absence of timing leaks. The dearth of comprehensive formal
methods for timing verification of binaries leaves many safety‐critical and
security‐critical systems vulnerable, calling into question their reliability and
trustworthiness.

Addressing this problem requires new formal verification techniques capa‐
ble of reasoning about execution time in a mathematically rigorous manner.
Such techniques must account for hardware‐level execution behaviors while
remaining applicable to real‐world software development workflows. The
development of precise, automated proof techniques for timing correctness
will not only improve safety in real‐time systems but also enhance security in
cryptographic implementations, ensuring that these systems can be trusted
even in adversarial environments.

Background

Our work builds upon Picinæ, a framework within the Rocq prover for the de‐
velopment of functional correctness proofs for arbitrary (e.g., non‐compiled)
machine code. Picinæ lifts machine code into an intermediate language (IL)
formalized in Rocq. The IL models instructions as state transformations using
assignments, jumps, and bounded loops. It ensures strong normalization and
is source language‐agnostic, supporting all machine code forms. Invariant
sets facilitate inductive proofs of correctness and security. A symbolic inter‐
preter executes IL abstractly, modeling unknowns via proof meta‐variables.
Dependent types enforce ISA‐specific constraints, like bit‐width bounds on
registers. Full code coverage is ensured by introducing proof goals for all
execution branches. Execution traces capture IL state transitions, facilitating
formal reasoning about temporal properties.

Abstract Interpretation is an alternative approach that approximates (some‐
times imprecisely) program behavior using abstract values. This can deter‐
mine a non‐strict upper bound for WCET using control‐flow analysis with
control‐flow paths modeled as constraint sets.

Measurement‐Based Analysis involves executing the code on bare hardware
or a simulator and recording the maximum execution time from sampled in‐
puts. This requires substantially less effort for complex systems, but is not
a comprehensive search over code paths and offers no formal guarantees.
This method’s precision can be improved by collecting more measurements
and by varying the initial processor state.

Instruction Timing

Picinæ measures instruction timing using cpu cycle counts for granular,
consistent analysis. The NEORV32 RISC‐V cpu is chosen for its detailed
timing documentation and predictable, non‐speculative execution, ideal for
timing‐sensitive domains like flight control.

Instruction timing is implemented as a Rocq function that maps each machine
instruction’s type, arguments, and state to a cycle count. Timing computa‐
tions bypass Picinæ IL, operating directly on decoded machine instructions
to maintain accuracy and architecture‐agnosticism. Instruction latency can
depend on previous instructions, so timing formulas incorporate cpu state
variables as specified by cpu WCET documentation.

This approach is less feasible for ISAs without formal timing specifications
(e.g., x86), but could be generalized using disassemblers to map instruc‐
tion addresses to instruction times. The resulting timing model is a input
state‐parameterized formula incorporating hardware‐specific conditions and
tolerances. Such formulas enable proving tight worst‐case execution time
bounds and verifying timing properties like absence of information leakage.

Disassembler

User-Defined
Invariant Set

and Proof

Picinae

Formal
Timing

Guarantee

CPU
Operational,

Timing
Semantics

Symbolic
Execution

Engine

Timing
Invariant

Generator
(optional)

Binary
Program

Figure 1. Picinæ Timing Module Pipeline

add:
beqz t0, end ; 0 - goto end if t0 == 0
addi t1, t1, 1 ; 4 - increment t1
addi t0, t0, -1 ; 8 - decrement t0
j add ; 12 - goto add

end: ; 16

Figure 2. Peano addition assembly code implementation

Trace Timing

Extending Picinæ’s symbolic interpreter to model timing properties entails
mapping the instruction timing function onto the cpu trace, yielding a list of
cycle counts. This list is summed, providing the total number of cycles taken
to reach the exit point of a function starting from an entry point. Timing prop‐
erties universally quantify over traces, expressing properties of all possible
executions.

Definition timing_invs (a : addr) (x y : N) (s : store) (t' : trace) :=
match a with
| 0 ⇒ Some (s R_T0 ≤ x ∧
cycle_count t' = (x - s R_T0) * (t_fall + 4 + t_branch))

| 16 ⇒ Some (cycle_count t' = t_fall + x * (t_fall + 4 + t_branch))
| _ ⇒ None end.

Theorem addloop_timing:
∀ s trace, satisfies_all lifted_addloop invariants exit_point trace.

Proof.
(* 0x4 - unfolded 'whammer' *) repeat step; psimpl; subst; lia.
(* 0x8 (break/loop cases) *) whammer. whammer.
(* 0x16 *) whammer. Qed.

Figure 3. Invariant set and proof for the addloop code in Fig. 2

Definition time_of_vTaskSwitchContext (t : trace) (gp : N) (mem : memory) :=
if uxSchedulerSuspended =? 0 then
cycle_count_of_trace t = (* total number of cycles equals... *)
25 + 3 * time_branch + 17 * time_mem
+ (if (mem[4 + mem[gp - 920 + (31 - clz uxTopReadyPriority) * 20]])

=? ((gp - 916) + (31 � clz uxTopReadyPriority) * 20)
then 22 + (clz uxTopReadyPriority) + 5 * time_mem
else 19 + time_branch + (clz uxTopReadyPriority) + 3 * time_mem)

else cycle_count_of_trace t = 5 + time_branch + 2 * time_mem.
Figure 4. Timing postcondition for vTaskSwitchContext

Evaluation

To demonstrate, we present examples of real‐world code for which we have
developed timing proofs.

Our first example, FreeRTOS’s vTaskSwitchContext, prepares the cpu for a
context switch between tasks. This function contains several branch condi‐
tions that appear in the final timing expression as seen in Fig. 4, as well as
checks for stack overflows that block further execution when triggered. This
timing expression is parametrized by several values in static memory.

Our second example is the ChaCha20 encryption cipher. This proof was
completed in one month by a team of four first‐year graduate students who
received roughly eight hours of training on Rocq and Picinæ. Due to limited
availability of SSL libraries that compile to RISC‐V, our ChaCha20 implemen‐
tation is written by hand from the RFC. Its timing expression is parametrized
only by plaintext length, proving that the implementation is immune to tim‐
ing attacks when run on a cacheless, non‐speculative RISC‐V processor.

FutureWork

Ongoing research into Picinæ timing proofs includes automating the creation
of timing invariants. This automation will use CFG analysis and symbolic exe‐
cution to reduce the workload required to write timing proofs, and automate
most of the proof process for simple examples. Because invariants remain
untrusted, this sacrifices no assurance for the end‐user.

Integration with common static analysis tools, such as Ghidra, will fur‐
ther simplify the interface for these proofs, offering the capability of
high‐assurance timing proofs for a larger audience.

Comparing the times revealed in timing proofs against experiments run on
real hardware will further support the conclusions derived by our system.

PLDI SRC 2025 | Seoul, South Korea | Extended Abstract

https://www.charles.systems/
mailto:charles@utdallas.edu
https://www.charles.systems/publications/PTM_SRC.pdf

