
Formally-Verified, Tight Timing Constraints for
Machine Code

Charles Averill

The University of Texas at Dallas
Dartmouth College

June 18, 2025

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



What’s the Deal?

Often we’d like to know exactly how long code takes to run:
In real-time systems, critical functions have strict timing constraints
In cryptographic systems, differences in execution time of
instructions or control-flow branches can expose secret data to
attackers

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



What do we want?

There exist techniques to mitigate timing failures in real-time and
cryptographic systems:

1. Worst-Case Execution Time (WCET) Analysis is a family of
techniques that compute upper bounds for the execution time of code

2. Constant-Time Cryptography is the practice of writing sensitive
cryptographic routines such that secret data is only used as an
operand if it does not impact the resulting resource/time usage

Neither of these approaches gives any formal guarantee about the
timing behavior of code.

For critical systems, we would like to be able to write a machine-checked
proof of exact timing behavior at arbitrary levels of precision.
Enter the Picinæ Timing Module.

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



How does it work?

Picinæ

Picinæ is an existing framework in Rocq for proving arbitrary
properties of machine code
Supports separation logic and linear temporal logic
Lifts machine code into a Rocq-defined IL from Ghidra P-code, so
architecture-agnostic
Full code coverage ensured by introducing proof goals for all
execution branches

Disassembler

User-Defined
Invariant Set

and Proof

Picinae

Formal
Timing

Guarantee

CPU
Operational,

Timing
Semantics

Symbolic
Execution

Engine

Timing
Invariant

Generator
(optional)

Binary
Program

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



How does it work?

Picinæ Timing Module

We define a function mapping instructions to cpu cycle counts
We map the instruction timing function onto an LTL trace
The resulting property is a statement that the number of clock
cycles that have occurred up to a point equals some arithmetic
expression

cycle_count_of_trace t = time_memaccess +
(if branch0_cond then 5 else 10) + ...

0x0 0x4 0x8 0x4 ...
Execution Trace

time_of_instr_at_addr

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



How does it work?

Timing Proofs

Picinæ proofs require the use of an invariant set - timing invariants just
detail the time up to a certain point in execution.
Proofs of these invariant sets typically only require

1. Stepping forward to the next invariant
2. Simplifying
3. Proving an equality over natural numbers

Consider the following timing proof for an imperative implementation of
Peano addition.

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



How does it work?

Addloop

add:
beqz t0, end ; 0 - goto end if t0 == 0
addi t1, t1, 1 ; 4 - inc t1
addi t0, t0, -1 ; 8 - dec t0
j add ; 12 - goto add

end: ; 16

If computing x+ y, the loop should iterate exactly x times before
execution completes.
At address 0, exactly x− t0 iterations should have occurred so far.

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



How does it work?

Addloop Proof

Definition timing_invs (a : addr) (x y : N) (s : store) (t' :
trace) :=↪→

match a with
| 0 ⇒ Some (s R_T0 ≤ x ∧
cycle_count t' = (x - s R_T0) * (t_fall + 4 + t_branch))

| 16 ⇒ Some (cycle_count t' = t_fall + x * (t_fall + 4 +
t_branch))↪→

| _ ⇒ None end.
Theorem addloop_timing:
∀ s trace, satisfies_all addloop timing_invs exits trace.
Proof.
- repeat step; psimpl; subst; lia.
- whammer. whammer.
- whammer.

Qed.

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



How does it work?

Evaluation

vTaskSwitchContext from FreeRTOS Kernel - timing postcondition
references static memory values and contains complex arithmetic
operations such as CLZ

Several more FreeRTOS timing proofs have since been written
ChaCha20 constant-time encryption cipher - shown to be immune
to timing attacks because postcondition is parametrized only by
plaintext length

Specification and proof performed by team of 4 first-year graduate
students with 8 hours of instruction on Rocq and Picinæ, provided
only with binary and assembly source

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025



How does it work?

Future/Ongoing Work

Automate creation of timing invariants due to their limited scope
Compare timing proofs with real execution trace timing
Utilize trace property composition to incorporate cpu caching behavior

Follow ongoing work at www.charles.systems

Charles Averill (UTD, Dartmouth) Formally-Verified Timing Constraints June 18, 2025

https://www.charles.systems

	How does it work?

